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Abstract

Estimating Worst-Case Execution Time (WCET) is paramount for developing Real-Time and

Embedded systems. The operating system’s scheduler uses the estimated WCET to schedule

each task of these systems before the assigned deadline, and failure may lead to catastrophic

events such as resource damage or even life loss. These systems must satisfy the timing con-

straints. For instance, it is essential to know that car airbags open fast enough to save lives.

The major components required to estimate WCET are architecture or platform, application,

and worst-case data. In this regard, we propose novel methods for these components using

machine learning techniques to estimate WCET safely and precisely to make these systems

more predictable and reliable than traditional approaches.

• Estimation of WCET on GPU architecture: With the advances in machine learning

and artificial intelligence in every field of life, due to its tendency to solve many prob-

lems with accuracy, it requires Graphics Processing Units (GPUs) to provide massive

parallelism for computation. GPUs are designed to provide high-performance through-

put, but their integration into real-time systems focuses on predictability because most

safety-critical applications have strict deadlines that need to be followed to avoid un-

wanted situations. We propose a Machine Learning approach to estimate the WCET of

the GPU kernel from the binary of the applications. The approach helps reduce the sig-

nificant design space exploration in a short time. We use a measurement-based approach

to train the machine-learning model using different kernel instructions, which can predict

the WCET of the GPU kernel to detect timing misconfiguration in the later development

phase of the systems.

• Estimation of WCET on Mixed-Criticality Systems: In Mixed-Criticality (MC)

Systems, there is a trend of having multiple functionalities upon a single shared comput-

ing platform for better cost and power efficiency. In this regard, estimating the suitable

optimistic WCET based on the different system modes is essential to provide these func-

tionalities. A single application has assigned multiple WCETs based on the criticality
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Abstract

of the system, such as safety-critical, mission-critical, and non-critical. We propose ES-

OMICS, a novel method to estimate suitable optimistic WCET using a Machine Learning

model. Our approach is based on the application’s source, and the model is trained based

on the large data set. To prove the effectiveness of our approach, we evaluated it with

a newly defined metric EDT using an analytical solution that allows us to compute the

optimum value in a mixed-criticality system based on experimentation. Our experimental

results outperform all the previous state-of-the-art approaches.

• Estimation of Worst-Case Data for WCET:Worst-Case Data which gives maximum

execution time, plays a vital role in the estimation of WCET. An evolutionary algorithm,

such as the Genetic Algorithm, has been employed to generate the Worst-Case Data.

The complexity of an evolutionary algorithm requires the use of several computational

resources. We propose a method to replace the hardware and simulator used in the

evolution process with Machine Learning models. This method reduces the overall time

required to generate Worst-Case Data. Different machine learning models are trained to

integrate with genetic algorithms. The feasibility of the proposed approach is validated

using benchmarks from different domains. The results show the speedup in the generation

of Worst-Case Data.

• Estimation of Early WCET: WCET is available to us in the last stage of systems

development when the hardware is available, and the application code is compiled. Dif-

ferent methodologies measure the WCET, but none give early insights into WCET, which

is crucial for system development. If the system designers overestimate WCET in the early

stage, then it would lead to an overqualified system, which will increase the cost of the

final product, and if they underestimate WCET in the early stage, then it would lead to

financial loss as the system would not perform as expected. We propose to estimate early

WCET using Machine Learning and Deep Neural Networks as an approximate predictor

model for hardware architecture and compiler. This model predicts the WCET based on

the source code without compiling and running on the hardware architecture. The result-

ing WCET needs to be revised to be used as an upper bound on the WCET. However,

getting these results in the early stages of system development is an essential prerequisite

for the system’s dimension’s and configuration of the hardware setup.

iv



Publications based on this Thesis

1. Vikash Kumar, Behnaz Ranjbar and Akash Kumar, “Utilizing Machine Learning Tech-

niques for Worst-Case Execution Time Estimation on GPU Architectures,” in IEEE Ac-

cess, vol. 12, pp. 41464-41478, 2024, doi: 10.1109/ACCESS.2024.3379018.

2. Vikash Kumar, Behnaz Ranjbar and Akash Kumar, “ESOMICS: ML-Based Timing Be-

havior Analysis for Efficient Mixed-Criticality System Design,” in IEEE Access, vol. 12,

pp. 67013-67024, 2024, doi: 10.1109/ACCESS.2024.3396225.

3. Vikash Kumar, Behnaz Ranjbar and Akash Kumar, “Motivating the Use of Machine-

Learning For Improving Timing Behaviour of Embedded Mixed-Criticality Systems,” In

proceeding DATE 2024.

4. Vikash Kumar, “Estimation of an Early WCET Using Different Machine Learning Ap-

proaches,” In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet

Computing. 3PGCIC 2022. Lecture Notes in Networks and Systems, vol 571. Springer,

Cham. https://doi.org/10.1007/978-3-031-19945-5 30.

5. Vikash Kumar, “An integrated approach of Genetic Algorithm and Machine Learning for

generation of Worst-Case Data for Real-Time Systems,” 2022 IEEE/ACM 26th Interna-

tional Symposium on Distributed Simulation and Real Time Applications (DS-RT). doi:

10.1109/DS-RT55542.2022.9932054.

6. Vikash Kumar, “Deep Neural Network Approach to Estimate Early Worst-Case Execu-

tion Time,” 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San

Antonio, TX, USA, 2021, pp. 1-8, doi: 10.1109/DASC52595.2021.9594326.

v



Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Contents vi

List of Figures x

List of Tables xii

Keywords xiv

Notation and Abbreviations xv

1 Introduction and Motivation 2

1.1 Real-Time System (RTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Hard RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Soft RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Need for WCET Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 AI on Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Challenges and Questions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contribution to this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 16

2.1 Different Techniques for WCET Estimation . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Measurement-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



CONTENTS

2.1.2 Static Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Uses of WCET Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 WCET Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Brief Overview of AI Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Estimation of WCET on GPU 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 GPU Hardware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 GPU Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 GPU Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Detailed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Learning of the GPU timing model . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Determining WCET of target kernel . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Generation of training data . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 Algorithm for ML-Based approach . . . . . . . . . . . . . . . . . . . . . 51

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Hardware and Software Requirements . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Prediction of WCET of Kernel . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 SMK Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 SP Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.4 Comparison with other policies . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Estimation of WCET on MCS 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



CONTENTS

4.3 Application and System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Analytical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 ML-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2.1 Training of the Models . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2.2 Inference of the Models . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Generation of Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4 ESOMICS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.5 System Objectives Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Hardware Platform and Software Environments . . . . . . . . . . . . . . 78

4.5.2 ESOMICS Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Comparison with other policies . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Estimation of Worst-Case Data for WCET 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Target Architecture and Framework . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 GA-evolution parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.4 Parameters for model training . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Bubble Sort Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 Insertion Sort Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Early WCET Estimation using ML and DNN 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Early WCET Estimation Using ML . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



CONTENTS

6.3.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Early WCET Estimation Using DNN . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 DNN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusion and Future Work 124

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 133

ix



List of Figures

1.1 Number of connected devices increasing rapidly [139] . . . . . . . . . . . . . . . 3

1.2 Difference between Embedded system and RTS . . . . . . . . . . . . . . . . . . 5

1.3 Distribution of execution time [145] . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Contribution of different component in WCET estimation . . . . . . . . . . . . . 12

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Measurement-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Static Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 General Architecture for Modern GPUs. . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 An NVIDIA Ampere GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 ML models WCET versus observed execution times for atax application . . . . . 56

3.6 WCET obtained using ML models versus MOET for bfs application . . . . . . . 57

4.1 Execution time distribution for an application from Mälardalen benchmark, run-

ning on the Raspberry Pi 4 board. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 An application analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Learning of the ESOMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Evaluation of the ESOMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 An overview of analytical and inference approaches . . . . . . . . . . . . . . . . 75

4.6 Analysis of duff application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Comparison of different approaches for determining WCETopt . . . . . . . . . . 83

4.8 ULO
LC and system goal based on two objectives for different approaches . . . . . 84

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



LIST OF FIGURES

5.2 Structure of Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Training of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 A scatter plot of measured vs predicted execution times for bubble sort using

different prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 A scatter plot of measured vs predicted execution times for insertion sort using

different prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 ML Model Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 WCET Estimation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 A scatter plot of measured vs predicted execution times for different trained

prediction models on the validation set. . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 A Neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 A Feed Forward Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Early-timing analysis approach using DNN. . . . . . . . . . . . . . . . . . . . . 117

6.7 Comparison of Loss values using different configuration. . . . . . . . . . . . . . . 119

6.8 Comparison of Learning Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.9 Comparison of Min, Max, and Avg RMSE values by executing the model using

12 different configuration settings. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Analysis of cnt application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Analysis of compress application . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Analysis of expint application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Analysis of fdct application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5 Analysis of insertsort application . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xi



List of Tables

3.1 Features extracted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Benchmarks for the evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Experimented ML Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 ESTIMATED WCET OBTAINED BY OUR APPROACH VERSUS MOET

FOR SMK ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 ESTIMATED WCET OBTAINED BY OUR APPROACH VERSUS MOET

FOR SP ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 R2 score of ML Models for SMK . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Comparison of approaches to estimate WCET using [19] . . . . . . . . . . . . . 59

3.8 Comparison of approaches to estimate WCET using [62] with MOET . . . . . . 61

4.1 Extracted Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Experimented ML Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Predicted Cycle using ML and Observed Cycle using Analytical approach for the

Mälardalen benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Percentage Deviation between Analytical and Best ML approach for the Mälardalen

benchmark on the metric LTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Comparison between ACET and WCET of different applications . . . . . . . . . 81

4.6 Percentage of tasks overruns for different approaches . . . . . . . . . . . . . . . 82

5.1 GA parameters used in different Generation Evolution . . . . . . . . . . . . . . 97

5.2 Percentage deviation between the execution time of each data point and the

maximum possible execution time for bubble sort . . . . . . . . . . . . . . . . . 100

5.3 Speedup ratio for bubble sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Percentage deviation between the execution time of each data point and the

maximum possible execution time for insertion sort . . . . . . . . . . . . . . . . 102

5.5 Speedup ratio for insertion sort . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xii



LIST OF TABLES

6.1 Features Extracted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Experimented Machine Learning Algorithm . . . . . . . . . . . . . . . . . . . . 112

6.3 4-Fold cross-validated Mean-Squared Error of each Regression Model . . . . . . 113

6.4 Extracted Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Layers and Properties of our Neural Networks . . . . . . . . . . . . . . . . . . . 118

6.6 RMSE Errors of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



Keywords

Real-Time Systems, Worst-Case Execution Time Analysis, Machine Learning,
General Processing Unit, Mixed-Criticality Systems, Worst Case-Data, Neural
Networks

xiv



Notation and Abbreviations

ACC Adaptive Cruise Control.

ACET Average-Case Execution Time.

ADAS Advanced Driver Assistance System.

AI Artificial Intelligence.

ALU Arithmetic Logic Unit

BCET Best-Case Execution Time.

BLQ Bank Load Queue

CFG Control Flow Graph.

CUDA Compute Unified Device Architecture

DDP Design and Development Phases

DL Deep Learning

DNN Deep Neural Network.

DPU Double-Precision Unit

ECU Electronic Control Unit.

ERTS Embedded Real-Time Systems.

ESA European Space Agency.

FMA Fused Multiply-Add

GA Genetic Algorithm.

GPU Graphics Processing Unit

ILP Integer Linear Programming.

IoT Internet of Things.

LSU Load-Store Unit

MCS Mixed-Criticality System.

ML Machine Learning

MLP Multi-Layer Perceptron

MAE Mean Absolute Error

MOET Maximum Observed Execution Time

xv



Notation and Abbreviations

MPS Multi-Process Service

MRQ Memory-Request Queue

MSE Mean Squared Error

MSHR Miss Status Handling Register

NoC Network on Chip.

OLS Ordinary Least Squares

OS Operating System.

OTAWA Open Tool for Adaptative WCET Analysis.

QoS Quality of Service.

ReLU Rectified Linear Unit

RF Register File

RMSE Root Mean Square Error.

ROP Raster Operation Processor

RQ Research Question.

RTS Real-Time System.

SE Symbolic Execution

SFP Single Feasible Path.

SFU Special-Function Unit

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SMK Simultaneous Multi-Kernel

SP Spatial Partitioning

SPs Scalar Processors

SVM Support Vector Machine

SVR Support Vector Regression

SWEET SWEdish Execution Time Analysis Tool.

WCET Worst-Case Execution Time.

xvi





Chapter 1

Introduction and Motivation

Our society has increasingly depended on Embedded Real-Time Systems (ERTS) over the last

few decades. These systems are now essential to our lives, bringing convenience and improving

several facets of our everyday activities. Mobile phones, for instance, are now commonplace and

enable us to contact anybody from any part of the world at any time. Asking for directions has

been supplanted with navigation systems, allowing us to go between places without difficulty.

Watching live sports and news broadcasts on television has allowed us to be entertained and

informed while lounging on our couches or sofas. In order to enable efficient and safe travel to

any location globally, ERTS has been installed into vehicles such as cars, trains, and planes.

The internet connection that each of these gadgets has connects them all. These ERTS can

effortlessly communicate with one another and deliver their respective services without any

hiccups or delays, thanks to the internet. The Internet of Things (IoT) ecosystem, where billions

of connected and communicative gadgets are found, results from this interconnection. In 2019,

there were an estimated 9 billion Internet of Things (IoT) devices linked to the internet, and it

is predicted that this number will increase to 30 billion by 2030 [139], as shown in Figure 1.1.

The explosive growth of IoT devices is evidence of society’s rising need for embedded real-time

solutions. Given these technologies’ significant impact on our lives, designers must prioritize

dependability and safety when designing and producing such items. Our lives increasingly

depend on the smooth operation of these ERTS, whether it is the dependability of a navigation

system directing someone to their destination or the safety measures in a car.

Nowadays, almost zero percent of microprocessors are used in computers. Industries are

inclined towards ERTS because they cover nearly 99% of the market [37]. Less than 1% of

all microprocessors sold yearly are used in general-purpose computers, including PCs, Macs,

engineering workstations, Cray supercomputers, and other general-purpose computers. The

remaining are used in ERTS, such as Refrigerators, Dishwashers, Coffee makers, Washers,
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Figure 1.1: Number of connected devices increasing rapidly [139]

Dryers, Microwave ovens, Printers, Fax, Augmented/Virtual Reality, and so on. All these ERTS

need to satisfy some requirements such as low cost, constraint to size, less energy consumption,

and real-time behavior to create affordable, reliable, and safe systems.

Since ERTS are so ubiquitous, they are commonly used in safety-critical application domains

such as automatic braking systems in automotive [103], insulin pumps in health care [138], and

fly-by-wire systems used in avionics [114]. The correctness of these systems depends on the

logical function and the time at which results are produced. In such systems, timing deadlines

must be satisfied. Otherwise, it could lead to environmental resource damage or loss of life.

For example, an airbag in the car must open on time if there is any collision to save lives. If

the airbag opens a little early or late, then it would be of no use because, in both cases, timing

deadlines are missed. The main research question in designing these systems is ensuring safety

and real-time constraints.

Worst-Case Execution Time (WCET) analysis aims to notify users of the program’s longest

execution time before the program is used in the final product. WCET estimates are a crucial

component in providing guaranteed service of system behavior because this value is used by

the Operating System (OS) scheduler to schedule each of the tasks/applications before their

deadline to prevent any catastrophic consequences. The estimation of WCET needs three

major components: a Hardware architecture/platform, an Application, and Worst-Case Data

that leads to WCET. In general, the actual WCET of an application is unknown. Therefore, it is

necessary to derive an estimate of the WCET. Because a WCET estimation must securely upper
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bound the application’s execution time, it inevitably overestimates the actual WCET. The

unpredictable behavior of the systems due to hardware architecture and application complexity

is the main reason for overestimation.

Several issues emerge in the design of a safety-critical system to satisfy the timing con-

straints. Designing such systems to ensure timeliness, dependability, and safety criteria is one

of the crucial concerns that must be addressed [145]. An autonomous car is a perfect example

of a safety-critical system because these systems must respond and behave correctly. For in-

stance, a vehicle contains hundreds of Electronic Control Units (ECU) whose task is to detect

pedestrians crossing the roads, maintain the lane, and use the automatic emergency brake if

there is any collision. The hardware platform must be planned so that the applications/tasks

meet their deadlines to construct a safety-critical system. However, to determine the schedu-

lability of each task, we need to know the WCET required to execute each task. The different

components involved in WCET estimation lead to enhanced complexity. The modern archi-

tecture/platform with advanced micro-architectures such as deep pipelines, branch predictions,

and multi-level caches complex the WCET estimation due to variable execution time. Acceler-

ators with thousands of cores and shared resources such as Network on Chip (NoC), memory

hierarchy, and controller to improve average performance, highly affecting the timing behavior

of applications [112]. The application code may follow several separate execution pathways,

each with a unique set of instructions and memory accesses, resulting in a unique execution

time that makes WCET analysis more difficult. The data that leads to WCET is also unknown

in the initial stage, and applying all the inputs is not feasible.

Artificial Intelligence (AI) [99] is an emerging technology in every field, with a better solution

to complex problems than traditional software algorithms that describe a set of rules for the

given input and output. Different popular AI approaches, such as Machine Learning (ML) [100]

and Deep Neural Networks (DNN) [125], outperform prior hand-crafted algorithms with better

accuracy. The popularity of AI makes it a perfect choice to integrate it with safety-critical

systems.

This thesis addresses the challenges associated with the design of Real-Time Systems (RTSs).

In this thesis, the term ERTS and RTS are used interchangeably. We propose an ML approach

for estimating WCET from an architectural point of view. We also present an ML approach

to estimate the optimistic WCET when an application has more than one WCETs, which is

very popular in Mixed-Criticality Systems (MCS). We introduced a theoretical-based scheme

to improve the Quality of Service (QoS) of the MCS. We propose the combination of Genetic

Algorithm (GA) and ML to determine the worst case data [81]. Finally, we present a novel

approach using ML and DNN to estimate early WCET for design space exploration [79],[83].
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Figure 1.2: Difference between Embedded system and RTS

The rest of this chapter is structured as follows. In Section 1.1, we summarize the RTS

definition, properties, and its different kinds. Section 1.2 presents the need for WCET analysis.

We introduced the AI definition and its usefulness in RTS in Section 1.3. Then, in Section 1.4,

we present the research questions and summarize the research challenges that need to be solved.

Finally, Section 1.5 and Section 1.6 describe this thesis’s key contributions and present the

organization of the remaining chapter, respectively.

1.1 Real-Time System (RTS)

RTSs are computer systems designed to respond to events or inputs within a specified time

frame, known as a deadline [75]. The correct behavior of the RTS depends not only on the

correct logical output but also on the time frame at which output is produced. Depending

on the specific application, this timeframe can range from microseconds to seconds. A wide

range of applications use RTS where timing is critical, and they need specialized hardware and

software to ensure they can meet their timing requirements. There is a misconception among

people regarding the Embedded system and RTS. They assume both are the same, but this is

not the case. An embedded system is a computer system embedded in a physical or mechanical

system that usually performs a set of instructions and often interacts with its environment. In

RTS, the system must react on time; otherwise, something may go wrong. Figure 1.2 shows the

difference between them and their applications. Among the various systems worldwide, there

exist two distinct categories. The first category includes embedded systems but not RTS, while

the second category comprises RTS but not embedded systems. However, a subset of systems,

ERTS, which are safety-critical systems where missing deadlines are not allowed, falls into the

intersection of both categories. There are two different kinds of RTS, which are defined below.
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1.1.1 Hard RTS

Hard RTS is a system where responses must occur within the required deadline [28]. Any wrong

or late decision would endanger human life or the environment’s safety. Such systems are also

known as safety-critical systems, where failure to meet the deadline could cause a catastrophic

outcome. One example of a hard RTS is a control system installed in a Nuclear Power Plant

to detect leakage. Suppose the leakage isn’t detected on time, and the leakage signal isn’t sent

to the control station. In that case, nuclear gas will spread into our environment, which could

pollute our environment and lead to the deaths of many people, birds, and animals.

Another example of a system with a strict timing requirement is Adaptive Cruise Control

(ACC), an Advanced Driver Assistance System (ADAS) that uses sensors and control algorithms

to maintain a safe and consistent distance between the driver’s vehicle and the vehicle in front

of it. ACC measures the distance and speed of the automobile in front of the driver’s car using

sensors like radar, lidar, or cameras. The technology calculates the necessary acceleration or

deceleration to maintain a safe following distance by continually measuring the distance and

speed of the lead vehicle. By keeping a safe distance from the car in front of them, minimizing

driver tiredness and tension, and enhancing the overall driving experience, ACC systems are

intended to increase safety and comfort for drivers.

1.1.2 Soft RTS

Soft RTS is a system where deadlines are important but will still function if deadlines are

occasionally missed [27]. Any wrong or late decision would reduce user satisfaction or QoS.

Examples of soft real-time systems include multimedia systems, video games, and web servers.

A missed frame using a Skype call to friends or colleagues would be annoying, but no one is

killed or injured because of the interruption. Usually, in such a system, failure to meet deadlines

means that the QoS is reduced, but the systems will still provide service.

Another example of Soft RTS is a web server. It is a piece of software that provides web

pages and other resources in response to requests from clients (like web browsers). In order to

provide a decent user experience, a soft real-time web server must be able to react to requests

in an acceptable amount of time, but it is not subject to the same rigorous timing constraints

as a hard real-time system. When a user requests a web page, the server is required to process

the request and respond in a timely manner. Also, the server must be able to process several

requests from several clients at once without sluggishness or failure. Nevertheless, if the server

is overloaded, there are network or hardware problems, or there is a stringent deadline, the

server might be unable to answer in time. The server may respond in these circumstances with
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reduced performance, such as sluggish response times or disconnected connections. Although

these problems might harm the user experience, they are typically not severe and can be fixed

by addressing the underlying problem.

1.2 The Need for WCET Analysis

WCET analysis [4] is an essential process in software engineering that involves analyzing and

determining the maximum time it takes for a program or system to complete a particular task

under certain conditions. When a system is in charge of carrying out numerous concurrent

activities, it must be demonstrated that even in the worst-case situation, all of these tasks can

achieve their deadlines. These guarantees are important to know before the system is out in

the market. It’s crucial to consider the execution time requirements of various tasks in order to

generate such overall timing assurances. As a result, WCET analysis offers a strong foundation

for creating RTS that are better and safer. This analysis is important for safety-critical systems,

such as those used in aerospace, automotive, and medical industries, where any errors or delays

can have catastrophic consequences. The need for WCET analysis can be summarized in the

following points:

• Predictability and Safety: Systems that are safety-critical must be reliable and secure.

Thus, they must always perform as planned and never endanger people or the environ-

ment. The identification and analysis of the worst-case situations that the system may

experience are crucial in safety-critical systems. This is due to the potential influence that

these circumstances may have on the system’s safety and predictability. For instance, if

the worst-case execution time of a brake system in an automobile system is incorrectly

calculated, the braking distance may be greater than anticipated, increasing the risk of

an accident. WCET analysis helps identify and quantify the worst-case scenarios for a

system. This involves analyzing the program code to determine the maximum time it

takes to execute a specific piece of code under a set of conditions. The conditions could

be inputs that trigger specific code paths or the worst-case behavior of external devices

like sensors or communication channels. By verifying that the system can handle these

worst-case scenarios within the required time constraints, developers can ensure that the

system is predictable and safe.

• Compliance: Safety-critical systems must undergo WCET analysis in accordance with

a number of tight norms and laws. Safety-critical systems must adhere to these standards

and laws’ detailed specifications and high levels of quality. For instance, the automobile

sector needs to comply with ISO 26262, while the aerospace industry needs to comply
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with DO-178B/C [124]. Adopting a multi-core processor in the avionics domain needs to

follow CAST-32A for certification [30]. These standards include detailed instructions on

how to conduct WCET analysis and what the outcomes should be.

• Optimization: WCET analysis can also be used to optimize the performance of a system.

By identifying the parts of a program that take the most time to execute, developers can

focus their optimization efforts on those areas to improve the overall performance of the

system. Optimization efforts can include code refactoring, algorithmic improvements, or

hardware upgrades. By optimizing the system’s performance, developers can improve the

system’s reliability, reduce its power consumption, and extend its lifespan.

• Cost and Time Savings: Developers may address possible problems and delays in a

system’s execution using WCET analysis before they become more difficult and expensive

to solve. Developers can locate possible bottlenecks and portions of the code that need to

be optimized by examining the program code and determining the worst-case situations.

By cutting down on the amount of time needed to build and test the system, can result

in cost savings. Early problem detection might also lessen the likelihood of expensive

redesign or rework later in the development cycle.

The different execution time estimates are shown in Figure 1.3. The curve represents the

measured and possible execution time for some real-time tasks [145]. The WCET is the longest

time the application takes to complete its execution on the target hardware. There are other

execution time measures that can be used to describe the timing behavior of an application.

The Best-Case Execution Time (BCET) is the shortest time the application takes to complete

its execution on the target hardware. The Average-Case Execution Time (ACET) is defined

as the time taken by the application between BCET and WCET. The minimal and maximal

observed execution times are obtained using some measurement that is less than the actual

BCET and WCET, respectively. The actual WCET must be found, or upper bounded so that

the WCET estimate must be safe, i.e., guaranteed not to underestimate the real, and tight, i.e.,

provide an acceptable overestimation of WCET. It should be noted here that the definition of

WCET is valid for the given hardware and application. Changing hardware and application

results in different WCETs.

1.3 AI on Real-Time Systems

Writing the software algorithm that defines the issue and/or solution to compute the output

based on the input and a set of rules is the traditional method of creating control logic for
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Figure 1.3: Distribution of execution time [145]

embedded systems. This method works incredibly well for systems that have simple, predictable

behavior, like a decision tree or the fundamental principles of physics. Nonetheless, in order to

build a set of rules that the control logic must adhere to, systems with complex interactions

need in-depth data understanding. For instance, identifying unusual patterns in the way a

factory assembly machine operates. The controller receives data streams from several sensors

for processing. The developer must be aware of the data sets that hint at potential issues

or anomalies. These sets will be made up of a complex fusion of several elements, including

temperature, manufacturing rate, and vibrations. Identifying these sets is a time-consuming,

error-prone, and challenging operation. It is more practical to let the algorithm figure out these

data patterns and the accompanying rules on its own. ML is an AI idea where a prediction

model is trained on data. On the basis of prior datasets viewed during the training phase, the

final model is then capable of making a prediction for a particular input vector. Inference is

the name for this procedure.

McCarthy et al. [99] initially proposed the idea of AI in 1955, but it wasn’t until recent

decades that the field made substantial strides thanks to the development of more potent com-

puting technology, huge datasets, and novel architectures like deep learning. Several research

and application fields have emerged as a result of the development of AI. The novel strategy of

developing data-driven applications without fully comprehending the complexity of the system

raises the issue of how to incorporate these prediction models in many areas, such as CPS

and IoT. These interfaces have produced ground-breaking technologies, such as autonomous

driving, anomaly detection, predictive maintenance, etc., that were thought to be impractical

with traditional programming.
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There are several fundamental distinctions between the creation of an ML model and con-

ventional programming logic. The parts/components of a typical ML system are described

below.

• Data Collection: Gathering relevant data and cleaning the data by handling missing

values, removing duplicates, dealing with outliers, and splitting the data into training,

validation, and testing sets as input for the model.

• Model designing and selection: Determining the appropriate model architecture that

suits the best to perform the prediction for the problem dealing with (e.g., classification,

regression, clustering).

• Model Training and Evaluation: Training the model with a subset of data and eval-

uating the model performance on the remaining data. Depending on the kind of prob-

lem, use the relevant assessment metrics (e.g., accuracy, precision, recall, F1 score, mean

squared error).

• Model Deployment and Monitoring: Setting up the model for deployment and start-

ing inference on the target platform. Maintaining track of the model’s performance in use

and, if necessary, modifying or retraining it to improve performance.

TensorFlow [2] and PyTorch [109] are two specialized frameworks that are frequently used

while designing ML models. These frameworks provide specialized tools for developing and

evaluating ML models as well as optimized implementations for ML architecture operators. To

train and execute these models, sophisticated server infrastructure with GPU capabilities is

required. We can divide the computational burden and reduce the bandwidth requirement of

IoT applications by deploying these models on edge devices, such as IoT sensors, smartphones,

etc. [36]. To make the models executable on these devices, however, significant optimization

work will be needed. For example, the models must be small enough to fit on the constrained

resources of these embedded edge devices or perform quantization on the model’s weights and

biases to fit them into 8-bit integers rather than 32-bit floats. For instance, Several AR/VR

activities, such as hand detection, eye tracking, and digital people, require AI approaches to

deliver high-quality interaction in order to bridge the gap between the real world and the

virtual one. AI is used in IoT applications for autonomous sensing and reasoning, such as when

a ”smart home” monitor system is used to identify intruders. Similarly, Individual users can

communicate with mobile assistants through voice, pictures, or text. AI is used to identify,

comprehend, and interact with users based on their inputs.
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1.4 Research Challenges and Questions

Variation in execution time is the major challenge that needs to be addressed byWCET analysis.

It occurs because of the characteristic of work the application has to perform on the given

hardware. Applications are typically sensitive to their inputs. Consider a railway system,

where a safety-critical system controls the trains and ensures they operate safely. The system

takes inputs from various sources, such as train schedules, track layouts, and signals. Depending

on the input, the system may need to adjust the train’s speed or direction to avoid collisions or

derailments. For example, suppose the train schedule shows that two trains are approaching a

single-track section at the same time. In that case, the safety-critical system must detect the

potential collision and assign the trains to slow down or stop to avoid the collision. Similarly,

if a signal indicates that a section of track is blocked, the system must instruct the train to

stop and wait until the track is clear before proceeding. Thus, the same application can take a

different execution time depending on the situation.

Equally crucial is the target hardware that the program runs on. Evidently, a new PC or

accelerator runs applications significantly faster than a previous machine. The timing charac-

teristics of the specific hardware on which the program runs must be taken into account by

the WCET analysis. In modern processors, throughput is optimized by performance-improving

technologies like caches, pipelines, speculation, etc. While these characteristics aim to improve

performance on average, they also add execution time unpredictability and make it considerably

more challenging to determine a reliable WCET estimate.

The worst-case data which the application will take as input to estimate WCET is just

as important. Obviously, knowing the worst-case input for the application is not easy, and

generally, people use a heuristic approach. In conclusion, both the hardware and software

properties must be considered to understand and predict the WCET of an application. As well

as Worst-case data must be known for an application.

According to the discussions in the previous sections and the challenges faced by this thesis,

the following research objective is addressed in this thesis:

To ensure the guaranteed timing constraints of RTS, we must thoroughly ex-

plore each WCET analysis component.

The following Research Questions (RQ) must be addressed while developing RTS systems,

examining RTS applications, and deploying RTS applications to accomplish the above objective.

• RQ1: How can we estimate the safe and tight WCET on GPUs architecture that is

computational acceptable to perform and still provide a sound bound?
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• RQ2: How can we estimate the optimistic WCET for an application in MC systems

having more than two execution time?

• RQ3: How can we determine or estimate the safe and tight low WCET for HC jobs in

order to enhance QoS (i.e., minimize the amount of LC tasks that are discarded) and

control the likelihood of mode switches?

• RQ4: How can we estimate the worst-case data of an application which leads to WCET?

• RQ5: How can the WCET analysis be used to provide early predictions in the absence

of actual platform measurements?

1.5 Contribution to this thesis

The aim of this thesis is to enable AI on RTS in different scenarios. Deploying AI on RTS

always targets a trade-off between predictability and correctness. Our goal is to identify and

reduce the trade-off in different scenarios. Figure 1.4 shows the major components required for

WCET estimation: architecture or platform, application, and worst-case data. In this thesis,

we try to improve all these components to make RTS safer and more predictable. The main

contributions of this thesis are as follows:
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1. First, this thesis proposed a novel ML-based approach to estimate the WCET of the

GPU architecture. The model is trained on a large dataset from different benchmarks.

The trained model is then used in the testing phase for validation. Our approach shows

better results than the state-of-the-art approaches. Our approach also eliminates the code

coverage issues that exist in prior techniques. Content of this work has been published in

the following publication: [85]

2. Secondly, we focused on estimating the WCET of an application having more than two

execution times. This part of the thesis is prevalent in the MC system to find the op-

timistic WCET of high criticality tasks in lower mode. We propose ESOMICS, a novel

method to estimate suitable optimistic WCET using a ML model. Our approach is based

on the application’s source, and the model is trained based on the large data set. To prove

the effectiveness of our approach, we evaluated it with a newly defined metric LTM using

an analytical solution that allows us to compute the optimum value in a mixed-criticality

system based on experimentation. Our experimental results outperform all the previous

state-of-the-art approaches. Content of this work has been published in the following

publications: [86, 87]

3. Thirdly, We proposed a method to estimate the worst-case data. Worst-Case Data, which

provides the longest execution time, is crucial for WCET estimate. The Worst-Case

Data was produced using an evolutionary process, such as the Genetic Algorithm. An

evolutionary algorithm involves the utilization of numerous computer resources due to its

complexity. With our approach, ML models take the role of the hardware and simulator

employed in the evolution process. The amount of time needed to create worst-case data

is decreased with this technique. Genetic algorithms are trained to combine with various

ML models. Using benchmarks from several areas, the suggested approach’s viability is

verified. The results show the speedup in the generation of Worst-Case Data. Content of

this work has been published in the following publication: [82]

4. Finally, this thesis work also proposed an ML and DNN approach to estimate early

WCET. WCET is available to us in the last stage of systems development when the hard-

ware is available and the application code is compiled. Different methodologies measure

the WCET, but none give early insights into WCET, which is crucial for system devel-

opment. Our method using ML and DNNs acts as an approximate predictor model for

hardware architecture and compiler. This model predicts the WCET based on the source

code without compiling and running on the hardware architecture. The resulting WCET
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needs to be revised to be used as an upper bound on the WCET. Content of this work

has been published in the following publications: [79, 84]

1.6 Thesis Outline

As shown in Figure 1.5, the thesis is organized as follows: Chapter 1 discusses the introduction

and motivation. Chapter 2 gives the background knowledge about different WCET techniques,

uses of WCET analysis, description of various WCET tools and AI overview. Chapter 3 presents

the ML model for GPU architecture. Chapter 4 discusses the estimation of optimistic WCET in

MCS. Chapter 5 talks about the Worst-Case Data estimation techniques. Chapter 6 describes

ML and DNN approaches to estimate early WCET. Finally, Chapter 7 summarizes the thesis

and discusses future work.
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Chapter 2

Background

The previous chapter introduced the trends and issues in RTS design. In designing such

systems, all timing constraints need to be satisfied. First, the architecture/platforms, ap-

plication, and worst data need to be appropriately known to accomplish this work. This

chapter mainly introduces the relevant preliminaries and background required to under-

stand the remaining chapter.. This chapter is organized as follows. Section 2.1 presents

the different techniques available for WCET estimation, in which a brief introduction of

available techniques, such as Measurement-Based, Static, and Hybrid approaches, is pre-

sented. Section 2.2 describes the use of WCET analysis in detail. Section 2.3 provides

detail about the various WCET tools available in academia and industries. Section 2.4

overview the different AI algorithms briefly, which are used in this thesis. Finally, we

summarise the chapter in Section 2.5.

2.1 Different Techniques for WCET Estimation

The distinction between whether the job under consideration is executed or statically evaluated

serves as the basis for the general classification of the methodologies for a WCET calculation.

The three significant approaches to estimating WCET are explained below.

2.1.1 Measurement-Based Approach

The Measurement-based method [81], [143] executes the task on the given hardware or the

simulator for the architecture’s different inputs and states (initial and intermediate) to measure

the execution time. Different input data sets are applied to measure the maximal program

execution time. It is an empirical technique to estimate WCET, which doesn’t require complete

knowledge of architecture. Figure 2.1 shows the pictorial representation of WCET estimation

using a Measurement-based approach. Once the hardware under analysis or a simulator with
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Figure 2.1: Measurement-Based Approach

the application is finalized, various inputs, denoted as Input1, Input2, ..., and Inputn, are

applied to the system to observe their corresponding execution times, represented as T1, T2,

..., Tn. Each input triggers the execution of the application, resulting in the generation of an

output. The time taken for the application to process an input and produce the output is

recorded. These execution times can vary depending on factors such as input data, hardware

characteristics, and system load. In the context of WCET estimation, the input that leads to

the longest execution time is of particular interest. This input, denoted as Inputn−1, takes the

maximum time to execute among all inputs. Consequently, the corresponding execution time,

Tn−1, is identified as the WCET for the given application.

The measurement-based approach is the most common technique in the industry because

hardware and simulators are usually available. Although there is no assurance that the max-

imum program run time was recorded, a safety margin is added to the measured execution

durations, which frequently results in timing findings that are significantly overestimated.

The main disadvantage of this method is that determining the inputs to be considered for

the WCET is not obvious, and running the WCET analysis over the entire set of possible inputs

is not feasible. Also, it is frequently necessary to instrument the code for the measurement,

for example, by adding instructions to manage hardware timers. However, the validation of

safety-critical systems frequently requires that the same code used in the finished product be

used.
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2.1.2 Static Approach

In the Static approach [39], [81] the application is not executed on the hardware or the simu-

lator. The results from the abstract timing model of the hardware are added to the structural

representation of the application program. The primary activities in static methods are creating

Control Flow graphs (CFGs), analyzing CFGs, combining CFGs with some abstract models of

the target hardware architecture, and estimating upper bounds for WCET. The static technique

strongly emphasizes safety and generates execution time boundaries that can be relied upon to

never be exceeded by the program being under analysis. To scale down the complexity of an

exhaustive analysis of all values, the large number of possible input data is reduced using a safe

abstraction. The static approach to WCET estimation, as detailed in Figure 2.2, involves a

comprehensive analysis of the program’s CFG and micro-architectural characteristics to derive

a precise WCET prediction. This approach leverages various techniques such as value analy-

sis, loop-bound analysis, low-level analysis (including cache and pipeline analysis), and path

analysis using Integer Linear Programming (ILP) to estimate the WCET accurately.

• CFG generation: The process begins with generating a CFG from the executable code.

The CFG represents the program’s control flow structure, illustrating how control flows

through the program’s basic blocks and branches. This representation serves as the basis

for subsequent analysis steps.

• Micro-architectural Analysis: It involves three key steps:

– Value Analyzer: The value analyzer computes value ranges for registers and address

ranges for instructions accessing memory. The Value Analyzer identifies infeasible

paths by analyzing the possible values that variables can take and the memory

accesses performed by instructions. Infeasible paths, where certain conditions or

constraints cannot be satisfied, can be excluded from further analysis, focusing efforts

on feasible paths that contribute to the WCET.

– Loop Bound Analysis: Loop bound analysis aims to determine upper bounds for

the number of iterations of simple loops in the program. The analysis identifies

the maximum number of iterations a loop can execute under any input scenario by

analyzing loop structures and loop-invariant properties. This information is crucial

for bounding the execution time of loops within the program.

– Low-Level Analysis/Processor Analysis: The low-level analysis focuses on under-

standing the micro-architectural effects of the program’s execution, particularly on

18



CFG

Value Analysis

Loop Analysis

Processor
Analysis

Path
Analysis WCET

Figure 2.2: Static Approach

processor features like caches and pipelines. This analysis classifies memory refer-

ences as cache hits or misses and predicts the program’s behavior on the processor

pipeline. The analysis provides insights into the program’s low-level performance

characteristics by considering factors such as cache behavior and pipeline stalls due

to cache misses.

• Path Analysis: Path analysis involves using ILP to formulate and solve equations repre-

senting the program’s execution paths. ILP is a mathematical optimization technique for

solving linear equations under certain constraints. In the context of WCET estimation,

ILP is employed to model the program’s execution paths and derive an optimal solution

for the WCET. Tools such as CPLEX [9] are utilized to solve the formulated ILP equa-

tions and determine the WCET of the program. CPLEX is a widely used ILP-solving tool

capable of efficiently handling complex optimization problems. By solving the ILP equa-

tions, the tool identifies the worst-case execution path(s) and computes the corresponding

WCET value.

Hardware vendors expose the success of the static approach, but in recent years, hardware

vendors do not reveal their system features anymore. Additionally, this method becomes com-

plex as the size of the application increases. Another problem of static analysis is that it may

result in overestimated outcomes if prudent judgments are made as a result of a lack of knowl-

edge at the time of the study. The scalability and complexity of the approach to the increase

of code size are significant issues in static analysis.
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2.1.3 Hybrid Approach

Combining ideas from measurement-based and static techniques is the rationale behind hybrid

approaches [113]. The hybrid technique finds what is known as Single Feasible Pathways (SFPs),

or program routes made up of a series of fundamental building pieces where the execution

is independent of the input data. Using symbolic analysis on abstract syntax trees, SFPs

may be found at the source code level. The SFPs’ execution times are then measured on

actual hardware or using cycle-accurate simulators in the following stage. Data input for a full

branch coverage must be provided for input-dependent branches. Measurements are also used

to estimate the execution duration of these components. An extra safety margin is provided to

the measured execution time to account for any measurement underestimate. In order to find

the longest path, the data from the SFPs are merged with methods from the static approach.

FIGURE 2.3 shows the component involved in the Hybrid approach. It is a sophisticated

approach that blends three distinct techniques to provide a balanced and accurate assessment

of a program’s WCET. Firstly, recognizing the inherent limitations of purely static analysis,

hybrid approaches incorporate online testing to measure the execution time of short sub-paths

within the code directly. By leveraging the actual processor’s behavior through online testing,

these techniques capture real-world execution dynamics, especially between decision points in

the code. This approach ensures a more realistic understanding of execution times, mitigating

the overly pessimistic estimates often associated with static analysis alone.

Secondly, hybrid methodologies enhance offline analysis by incorporating insights obtained

from testing sessions. This integration enables the extraction of valuable information, such

as the number of loop iterations and execution frequencies during modal operation. By in-

corporating this empirical data, hybrid approaches construct a nuanced model of the code’s

structure, identifying feasible paths through the program. This hybridization allows for a more

comprehensive analysis, enabling the determination of complete and viable execution paths,

which may not be fully captured through static analysis alone.

Finally, hybrid WCET estimation combines measurement and path analysis data to compute

WCET that accurately reflects the variability introduced by hardware effects. By integrating

information from both measurement and analysis phases, this approach captures the nuances

of execution time variation across individual paths due to hardware intricacies. This holistic

perspective ensures that the resulting WCET values balance the overly pessimistic estimates of

static analysis and the potentially optimistic values obtained solely through measurement.

This method does not require an abstract architecture model compared to the static method.

However, instrumented code is needed, which may not be allowed in all cases, and correct WCET
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is not possible because a safe initial state and worst-case input can not be assumed.

2.2 Uses of WCET Analysis

The major use of WCET is in the development and analysis of RTS. In such systems, scheduling,

and schedulability analysis are performed using estimated WCET, giving timing guarantees for

the system’s behavior as a whole and deciding whether or not time restrictions can be satisfied

for specific activities. WCET analysis is a natural method to use in any product development

when timeliness is critical, but it has a much wider application scope. Some of the main use of

WCET analysis in detail:

• Timing analysis: For RTSs, timing analysis is essential. It needs to perform tasks within

strict timing constraints. For example, a medical device may need to deliver medication

within a specific time window, or an automotive system may need to brake within a

certain distance. WCET analysis provides a precise measurement of the execution time of

a program, which can be used to determine if the program meets its timing requirements.

This analysis involves measuring the execution time of each instruction and identifying

the longest execution path, which represents the worst-case scenario.

• Code optimization: WCET analysis can help identify performance bottlenecks in a

program. By analyzing the execution time of each instruction, developers can identify

which parts of the code take the most time to execute. This information can be used

to optimize the code, either by re-writing it to be more efficient or by using compiler
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optimizations. By optimizing the code, the execution time of a program can be reduced,

which can increase system performance.

• Hardware design: WCET analysis can be used to design hardware platforms that meet

the timing requirements of a given program. By analyzing the WCET of a program

on different hardware platforms, designers can select the optimal platform that meets

the timing requirements. This analysis can also be used to design custom hardware

accelerators that can perform specific tasks more efficiently than a general-purpose CPU.

• System verification: WCET analysis can be used to verify the correctness of a real-time

system. By verifying that a system meets its timing requirements, developers can ensure

that the system operates correctly under all possible scenarios. This analysis involves

running the system under different scenarios and measuring the execution time of each

task. If the WCET of each task is within the timing constraints, then the system is

considered to be correct.

• Safety-critical systems: In safety-critical systems, failure can result in catastrophic

consequences. WCET analysis is essential in these systems to ensure that the system

meets its timing requirements and operates safely under all possible scenarios. For ex-

ample, in an automotive system, if the braking system does not engage within a certain

distance, the consequences could be severe. By analyzing the WCET of the braking

system, developers can ensure that it meets the timing requirements and operates safely.

Up till now, only robotics, avionics, automotive, space, and the automotive industry have

used WCET analysis in practice. As many of their products contain resource-constrained em-

bedded safety-critical RTSs, it is likely that these sectors will lead all other sectors in embracing

WCET analysis.

2.3 WCET Tools

The research in timinig analysis has been done for the last two to three decades, which led to

the development of numerous WCET tools both in academia and industries because of their

vast application in many domains. Some of the tools for WCET analysis have been described

below:

• SWEET: SWEdish Execution Time Analysis Tool is the abbreviation for the term ”

SWEET” [95]. In ALF format, SWEET analyzes programs. ALF stands for Artist

Flow Analysis language; it is a general intermediate program language format, especially
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developed for flow analysis. A number of translators are available, and ALF code may be

created from a variety of sources, including C and assembly code. The main function of

SWEET is flow analysis. The result of flow analysis is flow facts, i.e., information about

loop bounds and infeasible paths in the program. Flow facts are necessary for finding a

safe and tight WCET for the analyzed program. SWEET may also immediately provide

BCET/WCET estimations if a timing model is present, eliminating the requirement to

compute flow facts. SWEET has been developed by the WCET research team in Väster̊as,

Sweden, since 2001.

• OTAWA: OTAWA [13] stands for Open Tool for Adaptative WCET Analysis. It is an

open framework created specifically for the experimental static analysis-based WCET

calculation. To fulfill aims of simple extensibility and unrestricted openness, its design

has taken advantage of several potent characteristics from successful generic tools already

in existence, such as Salto or SUIF. As a consequence, we have a tool that represents the

program using an abstract architecture layer, with various analyses being carried out using

so-called code processors that are arranged in chains and store and apply annotations on

the abstract architecture layer. It includes several analysis tools, such as WCET Analyzer

and Timing Analyzer, that can be used to generate upper bounds on the WCET.

• Heptane: Open source software called Heptane [57] is distributed with the GNU Gen-

eral Public License version 32. The C++-based research prototype Heptane currently

supports the MIPS and ARM v7 instruction sets and was constructed with about 13,000

lines of code. To ensure that the tool builds correctly and runs non-regression tests for

the supported target processors and host operating systems, we use a continuous inte-

gration framework in particular. During the first tutorial on tools for real-time systems,

heptane was used as an example. Heptane’s goal is to provide upper limits for application

execution times. It aims at applications with strict real-time demands (automotive, rail-

way, and aerospace domains). Static analysis at the binary code level is used by Heptane

to calculate WCETs. Micro-architectural features like caches and cache hierarchies are

subject to static assessments. The first version of Heptane was developed in the late

nineties.

• Chronos: Chronos [93] is an open-source WCET analysis tool for real-time embedded

software. It takes as input the program binary, disassembles it, and performs static anal-

ysis on the assembly code. Static analysis involves program flow analysis as well as micro-

architectural modeling. The user can change the micro-architectural analysis routines to
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model new processor platforms. It is built on top of the popular Simplescalar architec-

tural simulator. Simplescalar allows the user to flexibly model different architectures for

simulation.

• aiT: To determine upper boundaries for the execution timings of code fragments (such

as those provided as subroutines) in executables, AbsInt created the timing-analysis tool

aiT [39]. These code fragments may be scheduler-called tasks in a real-time application,

where each job has a deadline. Because the source code lacks information on register

utilization, instruction, and data advertisements, aiT only works on executables. When

there are several memory locations with various timing characteristics, such addresses are

crucial for cache analysis and the timing of memory accesses. aiT relies on the standard

calling convention. If some code does not adhere to the calling convention, the user might

need to supply additional annotations describing the control-flow properties of the task.

• Bound-T: The European Space Agency (ESA) originally contracted Space Systems Fin-

land Ltd. to build the Bound-T [61] tool, which was designed to verify onboard software

in spacecraft. The tool determines an upper bound on the execution time of a subroutine,

including called functions. Optionally, the tool can also determine an upper bound on the

stack usage of the subroutine, including called functions. The input is a binary executable

program that typically has a symbol table contained in it (debug information). In some

counter-based loops, the tool can compute upper limits. The user enters annotations for

additional loops, known as assertions in Bound-T. Variable values may also be annotated

in order to enable the automated loop bounds. Annotations are written in a separate text

file, not embedded in the source code. The implicit path enumeration technique applied

to the CFG of the subroutine finds the worst-case path and the upper bound for one

subroutine.

• RapiTime: RapiTime is a robust timing and WCET analysis tool created especially for

embedded targets and to meet certification standards. You may utilize the timing mea-

surements generated by RapiTime to show that you’ve met the DO-178B/C objectives.

RapiTime combines static and dynamic analysis of your code on target to provide detailed

information on its timing behavior. RapiTime enables you to automate timing analysis

on your embedded system to spot timing problems early in the development process and

improve your code, saving you money down the road. The input of RapiTime is either a

set of source files (C or Ada) or an executable. The user must also provide test data from

which measurements will be taken. The output is a browsable HTML report describing
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the WCET prediction and actual measured execution times, split for each function and

subfunction. RapiTime’s minimal overhead means you can perform timing analysis in ev-

ery test run, making timing information available throughout your development process.

This information will help you identify timing issues early in development and minimize

WCET.

As we can realize, a number of tools have been designed in the last two decades in both

academia and industries to estimate WCET safely and tightly. We also observed from the

structure of each tool that the estimation of WCET requires target architecture or hardware,

the compiled binary, and the worst-case data. Most of the tools described above need the

executable of the application to estimate WCET, and none of the above tools provide WCET

in the early stage. As well as, setting the environment, which leads to WCET for the particular

application also not feasible.

To overcome all these, we proposed an AI-based WCET estimation in the thesis that doesn’t

require the need for the target architecture or platform, the compiled binary, and worst-case

data. Our approach also doesn’t need to set the environment all the time. The thesis describes

the proposed method using AI based on two phases. Firstly, Our approach needs to be trained

using the dataset of the particular architecture to learn the timing behavior of the architecture.

During the training, some of the tools mentioned above were used to verify our approaches’

correctness and result. Heavy and intensive computations are involved in this part and are

done once for each architecture. Secondly, the approaches are tested to evaluate their accuracy

using different benchmarks.

2.4 Brief Overview of AI Approaches

ML is a branch of AI that gives computers the ability to learn and develop on their own, without

having to be explicitly programmed for each job. It is predicated on the notion that computers

can recognize patterns and insights in data and apply these discoveries to generate predictions

or conduct actions based on brand-new, unforeseen data. By the use of ML, computers are

now able to solve challenging issues, spot patterns, and make precise predictions. The reason

for using ML models rather than Deep Learning (DL) models is interpretability, a significant

concern in Safety-Critical Systems. The DL models are like black boxes, and we do not know

what is happening in each layer, so we restrict ourselves to using only those models that are

interpretable. ML algorithms can be categorized into three broad types: supervised learning,

unsupervised learning, and reinforcement learning.

• Supervised Learning: The most prevalent kind of ML is supervised learning [21].
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With this method, a dataset made up of input data and related output data is sent to

the computer. The output data is referred to as the label, whereas the input data is

referred to as features. The goal of supervised learning is to develop a mapping function

that can forecast the intended result from fresh input information. It can be further

divided into regression and classification. Regression is used when the output variable

is continuous, such as predicting a stock price. Classification is used when the output

variable is categorical, such as predicting whether an email is a spam or not. Some popular

supervised learning algorithms include linear regression, logistic regression, decision trees,

support vector machines, and neural networks.

• Unsupervised Learning: When there are no labeled outputs in the data, unsupervised

learning is performed [59]. With this method, a dataset is provided to the computer, which

then analyzes the dataset in search of patterns and linkages. Clustering, Anomaly Detec-

tion, and Dimensionality Reduction may all be accomplished with unsupervised learning.

Clustering is the process of grouping similar data points together, while anomaly detec-

tion is identifying data points that are significantly different from the rest. Dimensionality

reduction is reducing the number of features in a dataset while retaining as much useful

information as possible. Some popular unsupervised learning algorithms include k-means

clustering, hierarchical clustering, principal component analysis, and autoencoders.

• Reinforcement Learning: Reinforcement learning [134] is a type of ML that involves

an agent interacting with an environment to learn how to make decisions that maximize

a reward signal. The agent receives feedback in the form of a reward or penalty for each

action it takes, and its goal is to learn the optimal policy that maximizes the total reward

over time. It can be used in robotics, game-playing, and autonomous driving. Some

popular reinforcement learning algorithms include Q-learning, policy gradient methods,

and actor-critic methods. In addition to the three main types of ML, there are also other

types, such as semi-supervised, transfer, and ensemble learning which is described below:

– Semi-supervised: It is a machine learning paradigm where the model is trained on

a dataset that contains both labeled and unlabeled data. In contrast to supervised

learning, where every data point in the training set has a corresponding label, semi-

supervised learning leverages the additional information provided by the unlabeled

data to improve the model’s performance. It leverages the abundance of unlabeled

data, which may be readily available or cheaper to acquire compared to labeled data.

– Transfer Learning: It is a machine learning technique where a model trained on
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one task is reused or adapted as the starting point for a model on a second related

task. It leverages the knowledge gained from the source task to improve learning

on the target task, particularly when the target task has limited labeled data or

computational resources. Transfer learning has become increasingly popular, espe-

cially in deep learning, due to its ability to boost performance and reduce training

time on new tasks. It enables faster convergence and reduces the amount of data

required for training on the target task, as the model starts with pre-learned features

or knowledge.

– Ensemble Learning: It is a machine learning technique that combines the predic-

tions from multiple individual models to improve the overall performance. The basic

idea is that by aggregating the predictions of multiple models, you can often achieve

better results than any single model could achieve on its own. The two most widely

used ensemble learning are Boosting and Bagging. This method helps to reduce the

overfitting and is more robust to outliers and noise in the data. It can also be used

to detect anomalies in data.

In this thesis supervised learning has been used. In-depth knowledge of the prediction model

of supervised learning is not required to understand the experiments presented. However, for

the sake of completeness, a brief description of each ML model is given in the following.

• Linear Regression: A straightforward and widely used approach for regression tasks—tasks

that require predicting a continuous output variable based on one or more input fea-

tures—is linear regression [58]. Finding a linear connection between the input character-

istics and the output variable is the aim of linear regression. The equation for a simple

linear regression model with one input feature can be written as follows:

y = β0 + β1 ∗ x+ ϵ (2.1)

where :

– y is the dependent variable or output variable that we want to predict

– x is the independent variable or input feature that we use to make predictions

– β0 is the intercept, which represents the predicted value of y when x is equal to zero

– β1 is the slope or coefficient, which represents the change in y for a unit change in x

– ϵ is the error term or residual, which represents the difference between the predicted

value of y and the actual value of y
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The objective of linear regression is to find the values of β0 and β1 that minimize the sum

of squared errors between the predicted values and the actual values. This is commonly

referred to as the ordinary least squares method. To find the values of β0 and β1, we use

a training dataset that consists of pairs of input features and output values. We then

calculate the values of β0 and β1 that minimize the sum of squared errors between the

predicted values and the actual values. This can be done using a variety of optimization

techniques, such as gradient descent. Once we have trained the linear regression model,

we can use it to make predictions on new, unseen data by plugging in the values of the

input features into the equation and calculating the predicted value of y. Linear regression

can be extended to include multiple input features by using a multiple linear regression

model. The equation for a multiple linear regression model with n input features can be

written as follows:

y = β0 + β1x1 + β2x2 + ...+ βn ∗ xn + ϵ (2.2)

Where x1, x2, ..., xn are the n input features and β1, β2, ..., βn are the coefficients or slopes

for each input feature.

• Polynomial Regression: The link between the independent variable x and the de-

pendent variable y is modelled as an nth-degree polynomial function of x in polynomial

regression [111], a kind of regression analysis. In comparison to a linear function, the

polynomial function may capture nonlinear interactions between the variables and offer

a better fit to the data.

The general form of the polynomial regression model with degree n can be written as:

y = β0 + β1x+ β2x
2 + ...+ βnx

n + ϵ (2.3)

where y is the dependent variable, x is the independent variable, β0, β1, β2, ..., βn are the

coefficients to be estimated, ϵ is the error term, and n is the degree of the polynomial.

The polynomial function can be expressed as a linear combination of powers of x, and

the coefficients can be estimated using linear regression.

It is crucial to remember that if the degree of the polynomial is too high, the polynomial

function may overfit the data and perform poorly on fresh data. To balance the bias-

variance trade-off, it is crucial to select a polynomial degree that is adequate. The choice

of the degree of the polynomial can be based on visual inspection of the data, or by

using statistical measures such as the adjusted R-squared, the Root Mean Square Error

(RMSE), or cross-validation. In general, a lower degree polynomial is preferred to prevent
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overfitting, unless there is strong evidence that a higher degree polynomial is necessary

to capture the underlying relationship between the variables.

• Ridge Regression: In order to avoid overfitting, ridge regression [33], a sort of reg-

ularised linear regression, adds a penalty term to the Ordinary Least Squares (OLS)

objective function. By adding a restriction on the size of the coefficients, the penalty

term decreases the complexity of the model and may enhance generalisation ability. The

ridge regression objective function with an L2 penalty term can be written as:

min
β

||y −Xβ||2 + α||β||2 (2.4)

Where y is the vector of the dependent variable, X is the matrix of the independent

variables, β is the vector of the coefficients to be estimated, and α is the regularization

parameter that controls the strength of the penalty term. The first term is the OLS

objective function, which minimizes the sum of squared errors between the predicted and

actual values. The second term is the L2 penalty term, which adds a penalty proportional

to the square of the magnitude of the coefficients. When there is multicollinearity between

the features, which can result in unstable and overfitting models in OLS regression, or

when the number of features exceeds the number of data, ridge regression is very helpful.

In ridge regression, the L2 penalty term stabilises the estimates and lowers the variance

of the coefficients, which can enhance the model’s performance. The regularization pa-

rameter α controls the trade-off between the fit to the training data and the complexity

of the model.

• Decision Tree: Decision trees [118] are a popular algorithm for both classification and

regression tasks. The main idea behind decision trees is to recursively split the data into

smaller and smaller subsets based on the values of the input features until a stopping

criterion is met. The result is a tree-like structure where the internal nodes represent

tests on the input features, and the leaf nodes represent the predicted output values.

The algorithm selects the best feature to split the data on at each node. This is done

by calculating a metric such as Information Gain or Gini impurity, which measures the

homogeneity of the target variable within each subset. The feature with the highest metric

is chosen to split the data, and the process is repeated recursively for each subset until

the stopping criterion is met.

The stopping criterion can be based on various factors, such as the maximum depth

of the tree, the minimum number of samples required to split a node or the minimum
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improvement in the metric. These parameters can be tuned to control the complexity of

the tree and avoid overfitting. Decision trees can handle both categorical and numerical

input features, and they can also handle missing data by imputing the missing values or

treating them as a separate category. One disadvantage of decision trees is that they can

be sensitive to small changes in the data and tend to overfit when the tree becomes too

complex.

• Support Vector Regression : Support Vector Regression (SVR) [130] is a variant

of Support Vector Machine (SVM) that is used for regression tasks. The main idea

behind SVR is to find a hyperplane that best fits the data while minimizing the margin

violations. Given a training set of n data points with m input features and corresponding

target values, SVR tries to find the optimal hyperplane that best fits the data subject to

the constraint that the deviations from the target values are within a certain margin.

min
w,b,ϵ

1/2||w||2 + C
n∑

i=1

(ϵi + ϵ∗i ) (2.5)

subject to the constraints:

yi − ⟨w, ϕ(xi)⟩ − b ≤ ϵi⟨w, ϕ(xi)⟩+ b− yi ϵi, ϵ
∗
i ≥ 0

where yi is the target value for the i-th data point, xi is the i-th input value, w and b are the

coefficients of the hyperplane, ϕ is the non-linear mapping function, C is a regularization

parameter that controls the trade-off between the margin and the deviation, and ϵi and

ϵ∗i are slack variables that measure the deviation from the margin on either side of the

hyperplane.

• Random Forest : Several decision trees are combined in Random Forest [24], an ensem-

ble learning approach, to increase the predictors’ robustness and accuracy. The method

builds distinct decision trees using subsets of the data and characteristics that are ran-

domly chosen, then aggregates their forecasts to provide a final prediction. Both classifi-

cation and regression tasks, high-dimensional data, non-linearly separable data, missing

values, and outliers may be handled using the technique. The main parameters of the

algorithm are n estimators (the number of decision trees in the forest), max depth (the

maximum depth of each decision tree), min samples split (the minimum number of sam-

ples required to split an internal node), min samples leaf (the minimum number of samples

required to be at a leaf node), and max features (the maximum number of features to
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consider when splitting a node). The decision tree in Random Forest is a binary tree that

partitions the data into subsets based on the values of the features, and the prediction is

obtained by aggregating the predictions of the decision trees.

The main advantages of Random Forest are:

– It can handle both classification and regression tasks.

– It can handle high-dimensional data with many features.

– It can handle non-linearly separable data and interactions between features.

• Gradient Boosting : An ensemble learning approach called gradient boosting [42]

combines a number of weak prediction models to create a strong prediction model. The

approach is based on the boosting principle, which entails adding weak models to the

ensemble successively in order to increase its accuracy. In order to gradually enhance the

model’s predictions, gradient boosting works by fitting a succession of decision trees to

the residuals (i.e., the difference between the real values and the forecasts) of the prior

trees. The algorithm can handle both regression and classification tasks, non-linearly

separable data, missing values, and outliers. The main parameters of the algorithm are

n estimators (the number of trees in the ensemble), max depth (the maximum depth of

each tree), learning rate (the step size of the gradient descent), subsample (the fraction of

the training data to use for each tree), and loss function(the function to optimize during

training, such as mean squared error or cross-entropy).

The prediction of gradient boosting is obtained by aggregating the predictions of the

decision trees, weighted by the learning rate and the performance of the trees. Specifically,

the final prediction is given by:

y =
∑

(α + f(x)) (2.6)

where y is the predicted value, α is the weight of the tree, f(x) is the prediction of the

tree for the input x, and
∑

is the sum of all the trees in the ensemble. The strength

of gradient boosting comes from the ability to iteratively improve the model by fitting

trees to the residuals of the previous trees. This allows the GB to gradually capture the

complex interactions between features and the target variable. The learning rate controls

the step size of the gradient descent, and the subsampling control the variance of the

model. The choice of loss function depends on the task and the type of data.

• Adaptive Boosting : Adaptive Boosting (AdaBoost) [41] is a boosting algorithm that
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adapts the weights of the training samples based on their previous performance. The basic

idea behind AdaBoost is to train a series of weak models on the weighted samples and

then combine their predictions to form a strong model. At each iteration, the algorithm

increases the weight of the misclassified samples and decreases the weight of the correctly

classified samples in order to focus on the difficult samples. The prediction of AdaBoost is

obtained by aggregating the predictions of the weak models, weighted by their respective

weights. Specifically, the final prediction is given by:

y = sign
∑

(α + f(x)) (2.7)

Where y is the predicted value, α is the weight of the weak model, f(x) is the prediction

of the weak model for the input x, and
∑

is the sum of all the weak models in the

ensemble. The sign function is used for classification tasks to convert the weighted sum

of the predictions into a binary decision. The strength of AdaBoost comes from the

adaptive weight update, which focuses on the difficult samples and gradually improves

the performance of the model. The learning rate controls the step size of the weight

update, and the choice of loss function depends on the task and the type of data.

The difference between Gradient and Adaptive Boosting is using different loss functions

(Exponential in GB and MSE or Squared loss in AdaBoost) and learning rates (variable

in AdaBoost and fixed in GB).

• Elastic Net : It is a linear regression model that combines the L1 and L2 regularization

techniques to overcome their limitations and improve the performance of the model [151].

The L1 regularization (Lasso penalty) encourages sparse solutions by penalizing the ab-

solute values of the coefficients, while the L2 regularization (Ridge penalty) encourages

smooth solutions by penalizing the squared values of the coefficients. The Elastic Net

combines both penalties by introducing a hyperparameter alpha that controls the trade-

off between the two penalties. The Elastic Net model can be formulated as follows:

min(1/2 ∗ ||y −Xβ||2 + alpha ∗ ||β||1 + (1− alpha) ∗ ||β||22) (2.8)

where:

– y is the dependent variable

– X is the design matrix
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– β is the coefficient vector

– α is the elastic net mixing parameter, which controls the relative weight of the L1

and L2 penalties

– ||β||1 is the L1 norm of the coefficient vector

– ||β||22 is the L2 norm of the coefficient vector

It is noteworthy that Elastic Net also has certain disadvantages, including possibly higher

computing costs and the requirement to adjust more hyperparameters compared to Ridge

or Lasso regression.

• Multi-Layer Perceptron (MLP): MLP [125] is a type of artificial neural network that

consists of multiple layers of interconnected nodes or neurons, each layer performing a

non-linear transformation of its inputs. MLP is a feedforward neural network, meaning

that the information flows only in one direction, from the input layer to the output layer.

The MLP model can be represented by the following equation:

y = f(W2 ∗ g(W1 ∗ x+ b1) + b2) + ϵ (2.9)

where y is the dependent variable to be predicted, x is a vector of independent variables

or features, f is the activation function of the output layer, g is the activation function

of the hidden layer, W1 and W2 are the weight matrices that determine the strengths of

the connections between the neurons, b1, and b2 are the bias vectors that determine the

offsets of the activation functions, and ϵ is the error term or residual that captures the

unexplained variation in y. The hidden layer is the layer of neurons that is sandwiched

between the input layer and the output layer, and its purpose is to extract and transform

the features of the input data into a new representation that is more suitable for the

prediction task. The number of neurons in the hidden layer is a hyperparameter that

needs to be chosen based on the complexity of the problem and the size of the dataset.

The activation functions f , and g are nonlinear functions that introduce non-linearity

into the MLP model, allowing it to capture complex and nonlinear relationships between

the inputs and outputs. Some commonly used activation functions are the Sigmoid func-

tion, the Hyperbolic Tangent function, and the Rectified Linear Unit (ReLU) function.

The weight matrices and bias vectors are the learnable parameters of the MLP model,

which are updated during the training process using an optimization algorithm such as

back-propagation. The goal of the training process is to minimize the loss function,
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which measures the discrepancy between the predicted values and the actual values of

the dependent variable. The loss function can be chosen based on the regression metric

and the nature of the data, such as Mean Squared Error (MSE), Mean Absolute Error

(MAE), and log-likelihood. The MLP model can be further improved by regularization

techniques, such as L1 or L2 regularization, which penalize the magnitude of the weight

matrices and bias vectors for preventing overfitting and improving generalization perfor-

mance. Dropout [131] is another technique that randomly drops out some neurons during

training to reduce co-adaptation and increase robustness.

2.5 Summary

In this chapter, we take a closer look at three different techniques for WCET estimation:

Measurement, Static and Hybrid approaches. The choice of technique is a trade-off between

tight and safe WCET. The use of WCET analysis is explained in detail to understand its

various application domains. We discussed the importance of various WCET tools available

in academia and industries. None of the tools mentioned in the previous section is capable of

providing insights into early WCET. To determine the WCET with precision in this thesis, we

proposed AI approaches and different AI approaches were explained in detail to understand

their use in the remaining chapters. The above-mentioned WCET analysis techniques, WCET

tools, and AI approaches will be used widely in the following chapters.
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Chapter 3

Estimation of WCET on GPU

This chapter summarizes our contributions, emphasizing real-time systems on GPU ar-

chitectures with strict timing guarantees. As a result, system execution must ensure that

tasks are finished before deadlines to meet each task’s latency needs. More precisely,

Section 3.1 presents the introduction and context of GPU architecture in real-time sys-

tems and its increasing popularity in safety-critical real-time systems such as autonomous

vehicles to provide massive parallelism for workloads. Section 3.2 describes the GPU

background in detail with its hardware, execution, and programming model. Section 3.3

presents our contributions regarding the timing model that allows multiple kernel inter-

ference to occur and estimates the WCET of GPU kernels using the ML model. The

experiment setup and its evaluation with real-life benchmarks and synthetic task sets are

shown in Sections 3.4 and 3.5, respectively. Section 3.6 summarises the contributions

mentioned above.

3.1 Introduction

With the advances in Machine Learning (ML) and Artificial Intelligence (AI) in every field

of life [64], due to their tendency to solve many problems with accuracy, it requires Graphics

Processing Units (GPUs) to provide massive parallelism. GPUs are commonly used as an

accelerator to exploit compute-intensive workloads in various application domains, such as

autonomous vehicles, industrial robotics, and avionics. For instance, the autonomous driving

domain uses ML and CV workloads to process visual data about the surroundings to find

pedestrians and objects [141] and to carry out driving safety protocols [104],[137]. GPUs are

designed to provide high-performance throughput, but their integration into real-time systems

focuses on predictability because most safety-critical applications have strict deadlines that

need to be followed to avoid unwanted situations. The increasing use of GPUs [112] in real-
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time embedded systems provides severe challenges in developing methods to find the Worst-Case

Execution Time (WCET) of the GPU kernel.

Traditional WCET analysis techniques [145] do not apply to GPUs directly because of the

multiple threads competing for the same resources. As in the CPU case, multi-core timing anal-

ysis is challenging to estimate with all the known methods and approaches. These challenges

gradually increase when switching to GPUs, considering the interference from different Stream-

ing Multiprocessors (SMs) and Communication Channels. Previous research works have been

done to guarantee the timing constraints for GPU applications using measurement and static

approaches. However, these approaches have their known issues. In the measurement-based

approach, the availability of the simulator or hardware to estimate WCET is not guaranteed

because of not knowing the initial architecture state and input. The scalability and complexity

of the approach to the increase of code size are significant issues in static analysis.

With each new generation and architecture, GPUs are becoming powerful and have thou-

sands of cores. Usually, one real-time application can not use an entire GPU, while multiple ap-

plications can be benefited from it. GPUs must deliver predictable application performance even

in worst-case circumstances for real-time applications since they must meet rigorous deadlines,

especially for safety-critical workloads. To overcome this, Nvidia provides Multi-Process Service

(MPS) [105], allowing multiple applications to co-run on GPU. Previous works [69, 126, 128]

have demonstrated that conflicts in the memory hierarchy (mostly in shared cache and DRAM)

may nevertheless affect the runtime of two applications executing on different GPU cores due

to the following reasons: (i) Cache set conflicts in the shared cache, (ii) DRAM bus contention,

and (iii) Row buffer conflicts in DRAM.

Integrating GPUs into real-time embedded systems is a complex process that involves many

steps. The selection and configuration of hardware and the identification and mapping of kernel

functions to SMs are important decisions that must be made during the software Design and

Development Phases (DDP), which come before the validation phase. The timing dimension

influences a significant portion of those decisions because the final system’s accuracy ultimately

depends on the ability of the implemented functions to complete within the specified time

budgets. To avoid timing misbehavior being caught at the timing analysis stage in the advanced

development phases, where changing design decisions is very difficult, early execution time

numbers already in the DDP are required. The variation in execution times due to multiple

factors, such as thousands of threads competing for the same computational resources and

contention from different memory hierarchies, compounds this situation. However, all the

state-of-the-art techniques cannot precisely provide WCET for the GPU kernel.

In this chapter, we propose an ML approach to estimate the WCET of the GPU kernel from
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the binary of the applications. The approach operates in two phases. In the first phase, the

timing model of GPU is learned using the ML model. Our approach comes with five different

ML models that are the best prediction of WCET. Learning is performed using comprehensive

measurement of kernel code. The WCET of each kernel is learned in the context of interference

through the enemy kernel. One benefit of our approach is that it avoids the problem of the

lack of public knowledge about the properties of the memory subsystem. The training phase

is executed only once per architecture. In the second phase, the WCET of the unseen kernel is

estimated using the timing model learned in the first phase for the interference suffered by the

kernel. This phase is executed once for each target program.

We believe our approach can be used for software in the safety-critical system, which uses

GPU and accelerator to accelerate the compute-intensive work and to guarantee timing pre-

dictability. As WCETs are required for these systems, some pessimism in WCET estimation

is acceptable, but missing a deadline, if it happens infrequently enough, can be tolerated. We

have evaluated our approach on the NVIDIA GPU RTX3060, for which some information, such

as scheduling policy, is not publicly available due to intellectual property. Our experiments

evaluate the WCET of 10 kernel programs from different benchmarks, such as Basic Compute

Unified Device Architecture (CUDA) Samples, CUDA Imaging Samples, and the Tango DNN

suite. Our approach is an empirical technique that doesn’t always guarantee a safe WCET

estimate. However, for the tested kernel, the estimated WCET is always larger than the actual

WCET. Our approach has two advantages over the existing hybrid technique. First, measure-

ments, which are time-consuming, are performed only once per architecture to train the ML

algorithms. Estimating the WCET of a target kernel is fast based on our experimental evalua-

tion. Second, since the WCETs of the kernel of a program are estimated using an ML algorithm

instead of measurements, Our approach eliminates the code coverage issue that exists in related

hybrid techniques. Also, it allows the users to find the WCET of any GPU kernels without

getting involved in the complexity of running two kernels simultaneously.

To our best knowledge, nobody has used ML approaches to estimate the WCET of the

GPU kernel. The NVIDIA CUDA programming approach is discussed in this work, although

the approach also applies to other analogous technologies, such as OpenCL.

Contributions: The contributions of the proposed approach are:

• We propose a novel approach to estimate WCET of the GPU kernel using ML based

timing model of the GPU. This is to analyze the timing properties of GPU programs.

• We implement our approach for commodity GPU hardware (i.e. NVIDIA RTX 3060).

• A selection of best prediction model based on R2 learning score obtained after experiments.
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• We evaluate our approach with several GPU kernel benchmarks. Our result shows promis-

ing WCET estimation because we observed that predicted WCETs are always higher than

actual WCET for all benchmarks and all ML algorithms. Our implementation and all

experimental data are publicly available1.

3.2 Background

To make an easier description of the GPU analytic model and optimization techniques in the

next sections, we describe some background knowledge about modern GPUs in this section. The

structure and programming model of CUDA are explained in Section II-A. The architecture

and features of Ampere GPU are detailed in Section II-B.

3.2.1 Terminology

Although GPUs have existed in some form for many years, NVIDIA coined the term ”GPU” in

1999 with the introduction of the GeForce 256 [1]. Many of the terms used by GPU researchers

today were developed by NVIDIA. The phrases, however, pertain to private components, of

which only certain information is made available to the general public. The main rival of

NVIDIA, AMD provides consumers with access to greater information regarding GPU imple-

mentation specifics. Unfortunately, two distinct sets of terminology and definitions for the

GPU’s components have emerged as a result of two manufacturers separately creating GPUs

that are not entirely open-source. Although each company’s GPUs have some distinctive fea-

tures, most of these terms refer to similar ideas.

3.2.2 GPU Hardware Model

A GPU is composed of multiple SMs sharing an L2 cache and DRAM controllers via a crossbar

interconnection network. The SMs are the central parts of the GPU architecture, which perform

all the vertex/geometry/pixel-fragment shader programs and GPGPU- programs. As shown in

Figure 3.1, an SM features a number of Scalar Processor cores (SPs) and two other types of

function units — the Double-Precision Units (DPUs) for Double-Precision (DP), floating-point

calculations and the Special-Function Units (SFUs) for processing transcendental functions and

texture-fetching interpolations. Other components, such as the Register Files (RFs), Load-Store

Units (LSUs), scratchpad memory (i.e., shared memory), and various caches (i.e., instruction

cache, constant cache, texture/read-only cache, L1 cache) for on-chip data caching also reside

in the SMs. Each of these GPU components has been explained briefly below.

1The source code is available at https://cfaed.tu-dresden.de/pd-downloads
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Figure 3.1: General Architecture for Modern GPUs.

• Scalar Processor (SP):The major basic processors of an SM are the scalar processors,

sometimes referred to as CUDA cores, which carry out the essential integer, floating-point,

comparison, and type conversion operations. Both the single-precision Floating-Point

Unit (FPU) and the integer Arithmetic Logic Unit (ALU) are fully pipelined components

of each SP.

• Special-Function-Unit (SFU): For quick transcendental function computations (such

as sine, cosine, reciprocal, square root, etc.) and planar attribute interpolations, the SFUs

are integrated. In addition to the SPs, each SFU has four floating-point multipliers that

can increase FP throughput. The SP pipelines and the SFU pipelines operate separately.

• Double-Precision-Unit (DPU): Particularly for DP computations, the units are the

DPUs. They employ extremely effective deep pipelines to carry out Fused Multiply-Add

(FMA) DP operations. The amount of DPUs in an SM determines the GPU device’s DP

performance; for example, the Maxwell GPUs have only 4 DPUs in the SMs and give only
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1/32 of their SP performance as DP performance.

• Load-Store-Unit (LSU): The LSUs are used to fetch and save data to memory, as

suggested by their name. They have specialized processing power to quickly determine

the source and destination addresses for memory requests.

• Register Files: In general, GPUs contain a huge number of registers. Because of their

size, GPU registers are implemented by SRAMs that are divided into banks in order to

maximize throughput. As a result, GPU registers have a high access latency relative to

CPU registers and may encounter bank conflicts [146].

• Local Memory: The local memory is a piece of the global memory rather than a physical

memory area. Similar to RFs, its scope is thread-private. When there aren’t enough

registers to carry all the necessary variables (i.e., register overflowing) or when arrays

are specified in the kernel but the compiler is unable to determine the precise indexing

to access them, it is typically utilized for temporal spilling. In Fermi and Kepler, both

L1 and L2 cache the local memory, but in Maxwell and Pascal, only L2 cache the local

memory. Register spilling in local memory hurts the performance as it introduces extra

instructions and memory traffic, especially when there is a cache miss (so the register

value has to be fetched from off-chip global memory).

• Shared Memory: The on-chip storage known as shared memory or scratchpad memory

is distributed among all of the units of an SM. It functions as a communication channel for

quick data transfer between various threads in a thread block (also known as a Cooperative

Thread Array or CTA). Compared to local memory or global memory, shared memory

offers a substantially larger bandwidth and lower access latency since it is on-chip. The

CUDA programming guide strongly advises optimizations that can move global/local

memory access to shared memory [49]. Similar to register files and L2 cache, shared

memory may be accessed in parallel since it has been divided into banks to increase

bandwidth. However, in case two addresses from the same memory request fall into the

same bank, a bank conflict occurs, and the accesses have to be serialized, which seriously

degrades the performance of the shared memory.

• Global Memory: The device memory, also referred to as GPU off-chip memory or GPU

main memory, is the global memory. Since it is the memory that GPUs use the most

frequently, its throughput often determines the maximum performance that GPUs can

achieve in memory-bound applications. The attainable global memory throughput, or sus-

tainable throughput [11], is mainly constrained by two factors: raw memory bandwidth
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and coalescing degree. (1) The raw memory bandwidth is limited by the pin number, wire

length, and the physical property of DRAM; therefore, it has been increasing slowly since

Kepler. However, the 3D-stack memory technique that Pascal recently used completely

transforms such an unchanging situation [144]. (2) Memory access coalescing, a method,

is used to benefit from sending huge data blocks at once. Each warp lane’s target ad-

dresses are first calculated separately by the LSUs. Prior to memory retrieval, specialized

Address-Coalescing hardware [32] will verify that addresses from the same warp are con-

stantly spread, which is the typical scenario for global memory access. Following one or

more aggregated block transfers from the cache or main memory, it notifies the memory

interface units [32]. The CUDA programming guide provides a detailed discussion about

the identification of memory coalescing [50].

• L1 Data Cache: In Fermi, the GPU’s L1 data cache made its debut. The shared memory

of an SM and the SM-private L1 cache both share the same on-chip storage. (16/48 or

48/16 KB in Fermi and 16/48, 32/32, or 48/16 KB in Kepler) Their relative sizes are

reconfigurable. 128 B makes up the L1 cache line. It is non-coherent and caches both

read and write operations to local and global memory [91]. For register spills, function

calls, and automatic variables, local memory is often used [49]. When caching access to

local memory instead of global memory, the L1 cache is writable rather than read-only.

The standard L1 cache and the texture cache are combined from Maxwell.

• L2 Cache: Fermi also served as the foundation for the unified L2 cache. All memory

access types, including global, local, constant, and texture, are supported, and it is con-

sistent with the host CPU memory. The L2 cache has a write-back replacement strategy

and is readable and writable [91]. It serves as the focal point for data unification [44] and

provides a convenient setting for data transfer amongst SMs. In order to drastically lower

the overall memory bandwidth need, the L2 cache is typically divided into banks, each of

which serves as a buffer for an off-chip memory channel (GDDR or HBM2-DRAM).

• Interconnection Network (NC): A crossbar network serves as the SM and L2 banks’

network of connections. It enables concurrent communication between many SMs and

L2 banks, greatly increasing NC throughput. A conventional crossbar NC encompasses

two data buses and an address bus, as described in [45]. While the two data buses form

a bidirectional channel between SMs and L2 banks, the address bus is only ever going

in one direction from SMs to L2 banks. Point-to-point communication is being used

here [72]. Each SM and L2 bank has a Memory-Request Queue (MRQ) and a Bank
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Load Queue (BLQ), respectively. An SM’s LSUs will create load requests, which will

initially be cached in the local MRQ before being sent to the destination BLQ through

the crossbar NC. After some waiting time in BLQ, the request will be processed by the

L2 banks. It is already known that the crossbar network comes at a high switching cost

for simultaneous connections. Particularly, when the accessing requests are random and

messy, interference will appear, which leads to the reduction of effective bandwidth [148].

3.2.3 GPU Execution Model

The GPU execution model refers to the way in which tasks are executed on a Graphics Process-

ing Unit (GPU). The execution model of a GPU involves several key components and concepts:

1. Thread Hierarchy: At the core of the GPU execution model is the concept of threads.

Threads are small units of work that are executed concurrently by the GPU. GPU threads

are organized into a hierarchical structure that includes blocks and grids.

• Thread: A thread represents the smallest unit of work that can be scheduled and

executed independently on a GPU. Threads are typically used to process individual

elements of data or perform specific calculations.

• Block: A block is a group of threads that can cooperate and synchronize with each

other through shared memory. Blocks are organized into a two or three dimensional

grid structure.

• Grid: A grid is a collection of blocks. It defines the overall structure and size of

the parallel computation. Grids can also be organized in a two or three dimensional

manner.

2. SIMT (Single Instruction, Multiple Thread): The GPU execution model employs a SIMT

architecture, where multiple threads within a block are executed simultaneously in a

SIMD (Single Instruction, Multiple Data) manners. SIMT allows the GPU to execute the

same instruction across multiple threads simultaneously, which increases parallelism and

computational efficiency.

3. Warp: A warp is a group of threads that are scheduled and executed together. In NVIDIA

GPUs, a warp typically consists of 32 threads. All threads within a warp execute the same

instruction but on different data elements.

4. Scheduling and Execution: The GPU scheduler manages the execution of blocks and grids

on the GPU. It assigns blocks to available SMs for execution. Each SM contains multiple

CUDA cores and executes the threads within a block in a SIMT fashion.
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• Thread Scheduling: The GPU scheduler determines which blocks are scheduled for

execution on each SM and manages the allocation and execution of threads within

a block.

• Memory Coalescing: GPUs optimize memory access by coalescing memory transac-

tions. Memory coalescing minimizes memory latency by combining multiple memory

accesses into a single transaction whenever possible.

3.2.4 GPU Programming Model

GPU programs are typically written using a model framework on top of an established pro-

gramming language. The CUDA programming model by Nvidia is the C/C++ interface for

the GPUs operation implemented by a combination of hardware and device-driver software.

Since the focus of this thesis is on NVIDIA GPUs, the programming model is described from

the perspective of that.

The CPU and GPU components share many programming features. To avoid confusion

between the two, the terms ”host” and ”device” are used as descriptors for data and code

pertaining to the CPU and GPU, respectively. The code is organized into functions that are

designed to be executed on the GPU, known as kernels. The program that executes on the GPU

has at least one kernel but must start its execution on the CPU. The host code is responsible

for preparing the data structures to be used by the GPU program, launching the program to

the GPU, and collecting and cleaning up data once the GPU is done. A grid is associated with

each kernel which contains a group of a thread blocks. Each thread block contains a maximum

of 1024 threads. Within the thread block, a group of 32 threads termed warp execute in a

lockstep manner. The thread from the same warp executes the same instruction in the same

cycle, provided there is no divergence.

The kernel, such as the one found in Listing 3.1, falls into the category of device code.

The global keyword indicates to the compiler that the function is a kernel. In CUDA

syntax, the threadblock index and thread index are represented by blockIdx.x and threadIdx.x,

respectively. The first line of the vector addition kernel computes a globally unique thread

index using the threadblock size (blockDim.x) and local offset. The suffix .x corresponds to one

out of three possible dimensions; however, for the sake of simplicity, the threadblock considered

is one-dimensional.

1 __global__ void vecAdd(double *a, double *b, double *c, int n){

2 // Get our global thread ID

3 int id = blockIdx.x*blockDim.x+threadIdx.x;

4
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5 // Make sure we do not go out of bounds

6 if (id < n)

7 c[id] = a[id] + b[id];

8 }

Listing 3.1: Sample GPU kernel for vector addition

Listing 3.2 shows the simplified version of the host code for the sample vector addition kernel

in Listing 3.1. As already discussed, the kernel is the function that runs on the GPU side by

massive parallel GPU threads. The way to specify the number of threads to execute the kernel

is via the <<< ... >>> configuration syntax. The CPU will

1. Allocate and initialize the host vector h a,h b,h c

2. Allocate device vector d a,d b,d c,

3. Copy the host data to the device (H2D),

4. Launch the kernel given a desired number of threadblocks and threads,

5. Copy the device data to the host (D2H),

6. If applicable, use the output data, and

7. Deallocate the host and device data.

1 // Allocate and initialize host vector

2 h_a = (double *) malloc(bytes);

3 h_b = (double *) malloc(bytes);

4 h_c = (double *) malloc(bytes);

5

6 // Allocate memory for each vector on GPU

7 cudaMalloc (&d_a , bytes);

8 cudaMalloc (&d_b , bytes);

9 cudaMalloc (&d_c , bytes);

10

11 // Copy host vectors to device

12 cudaMemcpy( d_a , h_a , bytes , cudaMemcpyHostToDevice);

13 cudaMemcpy( d_b , h_b , bytes , cudaMemcpyHostToDevice);

14

15 int blockSize , gridSize;

16

17 // Number of threads in each thread block
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18 blockSize = 1024;

19

20 // Number of thread blocks in grid

21 gridSize = (int)ceil((float)n/blockSize);

22

23 // Execute the kernel

24 vecAdd <<<gridSize , blockSize >>>(d_a , d_b , d_c , n);

25

26 // Copy array back to host

27 cudaMemcpy( h_c , d_c , bytes , cudaMemcpyDeviceToHost );

28

29 // Release device memory

30 cudaFree(d_a);

31 cudaFree(d_b);

32 cudaFree(d_c);

33

34 // Release host memory

35 free(h_a);

36 free(h_b);

37 free(h_c);

Listing 3.2: Sample Host code for vector addition

3.2.5 Related Works

In this subsection, we compare our work to the existing literature. Many works have attempted

to make GPU computation predictable or to develop an appropriate WCET analyzer.

In [18], the authors proposed an approach of measurement in conjunction with statistical

approaches such as Extreme Value Theory to estimate safe probabilistic WCET of GPU appli-

cations. The use of the measurement approach gives unsafe WCET for GPU kernels. Contrary

to our work, the method does not model interference and delay in execution due to other kernels

running simultaneously.

In [62], GDivAn was introduced to measure the WCET of arbitrary GPU kernel. It combined

the strength of Symbolic Execution (SE) and Genetic Algorithm (GA) to converge toward the

WCET. The problem with this approach is the complexity of the SE becomes intractable with

the growing number of threads. In contrast to their work, we focus on estimating the WCET

using ML models instead of generating the worst-case inputs.

In [70], the author introduced the Stargazer, an automated GPU design space exploration

framework based on step-wise regression modeling to understand benchmark diversity, hardware

bottlenecks, and trade-offs. In contrast, we use different ML models for the timing estimation
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of kernels and use the MPS service to execute both victim and enemy kernels concurrently to

measure the maximum interference.

In [16], the ILP-based approach was introduced to find the worst-case makespan of a GPU

kernel on a single SM. The approach was computationally intractable for many threads, and

the absence of cache effects made the approach limited to use. We propose a first attempt to

consider the interference suffered by the victim kernel and use that information to train an ML

model.

The work done in [17] extends [16] and presents the meta-heuristic of the simulated annealing

technique to find the better makespan. The methods were not safe and applicable to soft real-

time systems. Compared to [16], [17], we perform analysis at the binary code level. As a result,

predictions have a higher level of accuracy since the code being examined accurately represents

what the hardware really executes.

The WCET analysis of GPU L1 data caches was done in [65] using abstract interpretation.

The proposed WCET analyzer can attain a safe and very accurate estimation of the worst-case

GPU L1 data cache miss rates.

There are also recent studies on GPU to concurrently run two kernels to contend for compu-

tational resources in order to enable more confident measurement-basedWCET estimations [69],

[149]. In contrast to their work, we focus on predicting WCET instead of generating powerful

enemies for the victim kernel. The work done in [23] used a Neural network to predict the

impact of multicore contention on task execution time. Their technique could complement ours

for validating timing on GPUs.

3.3 Detailed Methodology

The proposed scheme to estimate the WCET of the GPU Kernel has two phases. In the first

phase, described in Section 3.3.1, ML models are trained. In the second phase, presented in

Section 3.3.2, the WCET of kernels is estimated using trained ML models. The generation of

training data is described in detail in Section 3.3.3. The ML-Based algorithm is explained in

Section 3.3.4.

3.3.1 Learning of the GPU timing model

The process of developing a timing model using a labeled dataset to discover patterns, corre-

lations, and dependencies within the data is known as the training phase in machine learning.

It entails several processes and strategies to optimize the model’s structure or parameters to

reduce mistakes and boost its capacity for precise prediction.

In the training phase for GPU architecture, the objective is to enable the model to com-
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Figure 3.2: Training phase

prehend and predict the timing behavior of the GPU accurately. This process involves several

steps, each aimed at gathering data and training machine learning models to understand and

predict the WCET of specific kernels, as shown in Fig. 3.2. The first step involves the concur-

rent execution of both victim and enemy kernels using the Multi-Process Service (MPS). These

terms, ”victim” and ”enemy,” originate from a paper [149], where the victim kernels represent

those whose WCET we are interested in determining, while the enemy kernels deliberately

contend for GPU resources. This concurrent execution scenario simulates real-world conditions

where multiple kernels compete for GPU resources, enabling the model to capture the dynamic

nature of GPU resource allocation and contention.

In the second step, profiling tools are employed to extract relevant features from the vic-

tim kernel. Profiling tools provide insights into various aspects of kernel execution, including

memory access patterns, compute intensity, and resource utilization. By analyzing these fea-

tures, the model gains a deeper understanding of the characteristics and behavior of the victim

kernel, which is essential for accurate WCET estimation. The third step involves measuring

the WCET of the victim kernel. This step serves as a label for the dataset used for training

machine learning models. By directly measuring the WCET, the ground truth data is obtained,

providing a reference for evaluating the performance of the trained models.

In the final step, the extracted features and corresponding WCET labels are utilized to train

different machine-learning models. During the training process, the models learn to associate

the extracted features with their corresponding WCET values, effectively capturing the complex

relationships between kernel characteristics and execution times.

The ML models learn about the GPU using the numerical values called features. The

features extracted for training are basically the instruction of the kernel and the metric, i.e.,

statements, operations, dram read bytes and dram write bytes. Some of the extracted features

are shown in TABLE 3.1. Features and WCET estimates are both represented as floating-point

values.
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Table 3.1: Features extracted

# addition operations # division operations # subtraction operations
# logic operations # function calls # return statements
# load operations # store operations # multiplication operations
# shift operations # jump statements # comparison operations
dram read bytes dram write bytes l2 utilization
ram read throughput dram read transactions dram utilization
dram write throughput dram write transactions inst inter thread communication
eligible warps per cycle gld throughput gld transactions
global hit rate global load requests global store requests
inst executed global loads inst executed global stores inst executed shared stores
l2 utilization l2 read throughput l2 write throughput

New
Kernel

Features 
Extraction

Predicted
WCET

Trained
ML Model

Figure 3.3: Testing Phase

3.3.2 Determining WCET of target kernel

FIGURE 3.3 illustrates the evaluation process of the model for estimating the WCET of new

kernels from unseen programs. This evaluation is crucial for assessing the generalizability

and effectiveness of the trained model beyond the training dataset. Firstly, the new kernel,

which has yet to be encountered during the training phase, is selected to test the model’s

performance. Features pertinent to the kernel’s execution characteristics are then extracted

using the techniques established during the training phase. These features serve as inputs to

the trained model. Subsequently, the model utilizes the learned weights (W ) acquired during

training to predict the estimated WCET for the given kernel. Through this process, the model

leverages its learned understanding of the relationships between the extracted features and

WCET to generate predictions. The evaluation process in FIGURE 3.3 demonstrates the

model’s capability to generalize its learned knowledge to unseen data, thereby providing valuable

insights into its performance in real-world scenarios.
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3.3.3 Generation of training data

The generation of the dataset requires following multiple steps as we need to set up the environ-

ment, which leads to maximum interference for our victim kernel. The first step is to choose the

enemy kernel, which would provide more harm to the victim execution kernel than any actual

concurrently running kernel. Secondly, we need to execute both kernels from the same CUDA

context, i.e., non-time-sliced manner, because it allows both kernels to use GPU hardware at

the same time. The two major environments for the concurrent execution of multiple kernels

are Simultaneous Multi-Kernel (SMK) and Spatial Partitioning (SP), illustrated in [128], [149].

In SMK, the victim and enemy kernels contend for per-SM hardware, such as CUDA core,

floating point unit, and load/store units. For instance, if all the load/store units are busy and

there is a request for it from another kernel, it will have to wait, which will eventually delay its

execution time. The local-shared memory, such as the L1 cache, is also a potential resource of

contention due to warps within the SM. This can be achieved by incorporating inline assembly

code into the kernel code. Listing 1.3 shows the CUDA code to implement this approach in the

GPU. The actual code needs some additional to acquire the warps using techniques, defined

in [147]. The major part is explained here to understand the partition of resources between

victim and enemy kernels. The warpid of each warp is assigned using the special register. The

conditional statement next in the figure represents that if the warp belongs to the enemy, then

only execute the remaining code.

1 __global__ void SMK_Enemy_Kernel(unit64_t wpid){

2 unit64_t wpid = 0;

3 // inline assembly code to read special register

4 asm("mov.u32 %0, %warpid;" : "r="(wpid));

5 if(wpid > Total_number_warp /2){

6 // Execute kernel code here

7 ...

8 ...

9 }

10 }

Listing 3.3: CUDA code for SMK enemy kernel implementation

In SP, the victim and enemy kernels are assigned a different number of SMs. The L2 cache

and DRAM is the primary source of contention between the kernels. For instance, the eviction

of cache lines by the enemy kernel used by the victim kernel will increase the execution time

for the victim kernel. Miss Status Handling Registers (MSHR) are also a potential resource of

contention across the SMs. Listing 1.4 shows the CUDA code to implement this approach in
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the GPU. The actual code needs some additional to acquire the SMs using techniques defined

in [147]. The major part is explained here, assigning different SMs to the victim and enemy

kernel. Once the smid is known, it is checked whether it is assigned to the enemy or not. If it

is not assigned, it’s immediately exited because this SM is for the victim kernel.

1 __global__ void SP_Enemy_Kernel(unit64_t smid){

2 unit64_t smid = 0;

3 // inline assembly code to read special register

4 asm("mov.u32 %0, %smid;" : "r="(smid));

5 if(smid > Total_number_SM /2){

6 // Execute kernel code here

7 ...

8 ...

9 }

10 }

Listing 3.4: CUDA code for SP enemy kernel implementation

To allow the victim and enemy kernel to run concurrently, we have used NVIDIA’s MPS.

This service allows us to execute two different kernels with the same CUDA context. In this

service, using the simple script, we allow the enemy kernel to launch first and then the victim

kernel because we want the victim kernel to experience interference throughout its execution.

Once this environment is set up, we extract the features from the victim kernel to form our

dataset, which will be fed to ML models.

It is unjustified to assume that a kernel performing a concurrent task will experience worst-

case interference on a consistent basis. But even with relatively simple code, a properly designed

enemy program can continuously and successfully stress an interference channel. We recommend

interested readers to [13], for methods designed to produce enemies that are more harmful to

the victim’s execution time.

3.3.4 Algorithm for ML-Based approach

The pseudo-code for the ML-Based approach, which includes code generation, training, and

testing of the ML approach, is presented in Algorithm 1. As inputs, the algorithm takes the

victim and enemy kernel, the GPU platform whose timing model to learn. On the other hand,

the WCET at the algorithm’s termination is the application’s output. The procedure begins

with calling to function DataGenerator, which uses GPU MPS to concurrently execute two

kernels to obtain the features and labels. Once the data is generated, it is fed to ML models for

training. Once the training is done, the metric R2 is used to choose the best ML model for the

inference of the new kernel. The value obtained during inference/ testing is the desired output
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of the victim kernel.

Algorithm 1 ML-Based Approach
Input: Victim Kernel, Enemy Kernel, GPU
Output: WCET

1: Procedure ML approach()
2: features, labels = DataGenerator(GPU MPS(Victim Kernel, Enemy Kernel))
3: ML = Training(features,labels)
4: y = Testing(New/victim kernel)
5: WCET = y
6: end Procedure

3.4 Experimental Setup

This Section presents the experimental setup used for the methodology discussed in Section 3.3.

The hardware and software environments are first introduced in Section 3.4.1. The programs

used for evaluating the quality of predictions are presented in Section 3.4.2. We then detail the

learning and prediction phase of our approach Sections 3.4.3 and 3.4.4.

3.4.1 Hardware and Software Requirements

The NVIDIA GeForce RTX 3060 is used in our experiments running CUDA 12.1. Fig. 3.4 shows

the layout of the NVIDIA GeForce RTX 3060 used in our work containing 28 SMs. Each SM

contains multiple CUDA cores for integer and floating-point arithmetic and has an L1 cache

of size 128KB shared among the threads. It also includes various load/store units that load

data from/store data to cache or DRAM and multiple special function units implementing sine,

cosine, square root, etc., in hardware. The smallest unit of scheduling in SM is warp. The warp

scheduler dispatches the ready warp for execution on computing hardware. Each SMs share

3MB of L2 cache and a global memory of 12GB.

In this work, we use a measurement-based approach to train the ML model using different

kernel instructions, which can predict the WCET of the GPU kernel to detect timing misconfig-

uration in the later development phase of the systems. We also largely avoid the problem that

hindered earlier work, i.e., the lack of public knowledge about the properties of the memory

subsystem, by employing measurements.

The profiling tools that are most frequently used for GPU programs on NVIDIA devices

are Visual Profiler and Nsight Compute Command-line Profiler. The command-line profiler is

heavily used in this work to measure various runtime events and performance indicators, such

as kernel execution time and the number of instructions in the kernel.
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Figure 3.4: An NVIDIA Ampere GPU.

Table 3.2: Benchmarks for the evaluation

Application Description Domain # kernel
2dconv 2D Convolution Linear Algebra 1
Alexnet Image classification Neural Network 23
covar Covariance computation Linear Algebra 3

Eigenvalues Scaled factor of eigenvector Linear Algebra 1
fdt2d 2D finite difference time domain kernel Simulation 3

gramschm Gram-schmidt process Linear Algebra 3
Histogram Compute 2D saturating histogram with maximum 256 bins Data Mining 2
MatrixMul Dense matrix-matrix multiply Linear Algebra 1
Mergesort Merge sort Program Data Mining 5
Vectoradd Vector addition Linear Algebra 1

3.4.2 Benchmarks

On ten benchmarks from the different benchmark suites, the accuracy of WCET predictions

of the kernel was assessed. TABLE 3.2 shows the full description of the victim kernel used

for the evaluation of the approach. The kernels are chosen such that it belongs to different

domains to show the prospect of our approach. The dominance of applications from the Linear

Algebra domain is more here because mostly GPU in Autonomous vehicles uses computer vision

algorithms to detect pedestrians and objects, whereas all these applications run underlying these

algorithms only. The number of kernels in each application varies depending on the domain of

the application, which further leads to different numbers of operations and statements in each

kernel and eventually having different execution times.
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3.4.3 Training Phase

A total of 5000 kernels was generated for the training of the ML model from the different

benchmark suites such as CUDA-SDK, FastHOG [117], GPGPU-sim [10], LonestarGPU [106],

Mars [60], Maryland [56], Parboil [132], Polybench [46], Rodinia [31], Shoc [34], and Tango

DNN Suite [71]. We have ensured that these suites’ generated kernel covers all the instructions

from the different domains using different inputs. The quality of the timing model depends

on the input training data, which must be as realistic of the real world as feasible in order

for the timing model to perform well. This is totally avoided in our case because we have

chosen familiarly known benchmarks to create the dataset. To the greatest extent possible,

bias in the training data was avoided because it led to the overfitting of the model. We found

that some features have greater values, and some features have lower values. These differences

in the range of values bias the model’s prediction to be inclined towards values of features

that are larger, and the features having lower values contribute much less to the prediction,

i.e., low-value features have no significance in the prediction. To tackle this issue, we need to

normalize our data value in the range of 0 to 1. Several frameworks, such as PyTorch [109] and

Tensorflow [2], are available today. We have used the PyTorch framework in this experiment.

We used 80% of kernels for the training and cross-validation and the remaining 20% for

the testing in both environments. Each kernel was executed ten times to set the Maximum

Observed Execution Time (MOET). Executing the 5000 kernels to obtain the timing samples

for the two environments required approximately seven days using an NVIDIA RTX 3060 GPU

card. The length of the training phase is not a concern to us because it only needs to be

done once for each architecture. Training, executed on a Linux machine running on a Victus

HP R5-5600G with six-core AMD Ryzen processors, required around 40 minutes for the 5 ML

algorithms.

We chose the 5 ML algorithms based on preliminary experiments that produced the best

outcomes, such as Support Vector Regression (SVR), Random Forest (RF), ElasticNet (EN),

Adaptive Boosting (AdaBoost), and Gradient Boosting (GB), has been made as shown in

TABLE 3.3. The abbreviations SVR, RF, EN, AdaBoost, and GB will be used throughout the

remainder of the chapter in place of the full names and explained in detail in Chapter 2.

The selection of the best models is made using their R2 score. The R2 score, also known as

the coefficient of determination, is a statistical measure that indicates how well the predicted

values of a model fit the actual values. The R2 score ranges from 0 to 1, with a higher score

indicating a better fit.
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Table 3.3: Experimented ML Algorithm

Algorithm Description
Support Vector Regression (SVR) Type of support vector machine
Random Forest (RF) A multitude of decision tree
Gradient Boosting (GB) Boosting algorithm with complex dataset
Adaptive Boosting (AdaBoost) Boosting algorithm with simpler dataset
ElasticNet (EN) Combination of Lasso and Ridge Regularization

3.4.4 Testing Phase

The goal of the testing/inference phase is to quickly and effectively produce predictions or

insights using the trained model. Compared to the training phase, it takes fewer computing re-

sources and is frequently speed and efficiency-optimized. In situations where real-time reactions

are necessary, the process might be interactive or automated and incorporated into production

systems.

The testing phase is implemented by using the scikit library. The trained ML models with

their weights and biases were used to predict the WCET of new kernels in the current state of

the implementation. The WCET for each kernel is estimated for both environments, one for

SMK and the other for SP.

3.5 Evaluation

The quality of our approach is evaluated from different points of view. First, we evaluate the

quality of WCET predictions of entire programs in Section 3.5.1. Then, we evaluate the WCET

of different benchmarks using SMK (Section 3.5.2) and SP (Section 3.5.3). The comparison

with the other policies are then presented in Section 3.5.4.

3.5.1 Prediction of WCET of Kernel

The detailed analysis of benchmark atax, which is matrix transpose and vector multiplication

from Polybench, is shown in Fig 3.5. This benchmark is straightforward enough to guarantee

that our method is the only source of pessimism in WCET estimations. It depicts the MOET

and ML models predicted WCET for all 5 ML algorithms. The estimated WCETs are compared

with the MOET of the benchmark, obtained by taking the maximum timing of 1000 executions,

all using the inputs that trigger the worst-case execution path. The SMK environment is used

for this experiment. We randomly choose the 1000 instances to show the result here, and it

has nothing to do with the Maximum Observed Execution Time (MOET), which periodically

increases and then decreases as the number of runs progresses.
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Figure 3.5: ML models WCET versus observed execution times for atax application

In terms of atax, SVR received the highest WCET estimate, followed closely by GB. Ad-

aBoost obtained the smallest WCET estimate, followed tightly by EN. Although employing

our ML models, we did not observe any WCET estimates that were understated. We found

that most programs had WCET prediction duration’s of around thirty seconds when it came

to WCET estimation time. Similarly, the detailed analysis of benchmark kmeans from Rodina,

is shown in Fig 3.6. In this case, SVR also received the highest WCET estimate, followed

closely by GB. EN obtained the smallest WCET estimate, followed tightly by Adaboost. The

SP environment is used for this experiment. The EN shows better results than other models

because of its inherent property, which allows both L1 and L2 regularization to be used in the

cost function to minimize it. The L2 regularization reduces the overfitting of the model to

become a complex model for the given patterns. Similarly, L1 regularization not only reduces
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Figure 3.6: WCET obtained using ML models versus MOET for bfs application

the overfitting of the model but also helps with feature selection.

3.5.2 SMK Environment

Prior work has been done to choose the most promising enemy kernel capable of causing max-

imum interference, such as sacalrProd and stereoDisparity. We have used scalrProd as an

enemy/stressor kernel in this environment from [149].

TABLE 3.4 reports the WCET estimated by our approach on the benchmarks using the

five selected ML algorithms. The estimated WCETs are compared with the MOET of each

benchmark, obtained by taking the maximum timing of 1000 executions, all using the inputs

that trigger the worst-case execution path. The best-performing variant of ML models obtains

the predicted WCET values in the TABLE regarding kernels’ quality of learning: see Section
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Table 3.4: ESTIMATED WCET OBTAINED BY OUR APPROACH VERSUS MOET FOR
SMK ENVIRONMENT

Application SVR RF GB AdaBoost EN MOET Overestimation factor
(ms) (ms) (ms) (ms) (ms) (ms)

2dconv 5.12 19.61 2.07 7.7 1.47 0.282 5.25
Alexnet 81229.63 46053.49 20730.16 42781.85 39901.50 7224.10 5.52
covar 75020.81 5122.96 14765.19 5794.17 14862.7 1578.07 3.24

Eigenvalues 51.22 9.42 45.30 5.80 16.7 4.67 1.24
fdt2d 10441.69 2461.17 1843.67 1676.84 1650.55 158.929 10.38

gramschm 51229.6 87430.01 35655.23 41624.42 41456.58 2417.16 14.75
Histogram 2.07 117.75 0.61 3.9 1.49 0.11 5.45
MatrixMul 10.34 3.41 4.15 4.90 2.14 0.52 4.11
Mergesort 34.12 24.31 14.23 28.26 15.8 2.15 7.34
Vectoradd 5.12 5.67 3.07 5.88 2.47 0.24 10.29

Table 3.5: ESTIMATED WCET OBTAINED BY OUR APPROACH VERSUS MOET FOR
SP ENVIRONMENT

Application SVR RF GB AdaBoost EN MOET Overestimation factor
(ms) (ms) (ms) (ms) (ms) (ms)

2dconv 5.12 19.61 2.07 7.7 1.47 0.385 3.81
Alexnet 81229.63 46053.49 20730.16 42781.85 39901.50 7975.966 5.0
covar 75020.81 5122.96 14765.19 5794.17 14862.7 2083.491 2.45

Eigenvalues 51.22 9.42 45.30 5.80 16.7 4.68 1.23
fdt2d 10441.69 2461.17 1843.67 1676.84 1650.55 159.01 10.38

gramschm 51229.6 87430.01 35655.23 41624.42 41456.58 7004.977 5.08
Histogram 2.07 117.75 0.61 3.9 1.49 0.11 5.45
MatrixMul 10.34 3.41 4.15 4.90 2.14 0.97 2.20
Mergesort 34.12 24.31 14.23 28.26 15.8 2.87 5.50
Vectoradd 5.12 5.67 3.07 5.88 2.47 0.34 7.26

IV-D for more details. The rightmost column gives the overestimation factor, calculated as the

ratio between the estimated WCET and the MOET. The estimated WCET used to calculate

the overestimation factor is the one depicted in boldface in the TABLE, calculated by the

less pessimistic ML technique. It describes how much the predicted WCET deviates from the

MOET.

The calculated WCETs are consistently higher than MOETs, as we have observed. No ML

model consistently outperforms the others on all benchmarks. The lowest estimated WCETs

are most of the times computed by EN (6 times out of 10) and GB (2 times). The ML

algorithm that computes the largest WCET estimates the most often is SVR. fdt2c is by far

the overestimated benchmark, for the rest the overestimation factor varies between 1.24 and

10.38.
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Table 3.6: R2 score of ML Models for SMK

ML Models R2 score
SVR 0.45
RF 0.57
GB 0.60

AdaBoost 0.65
EN 0.77

Table 3.7: Comparison of approaches to estimate WCET using [19]

Application [19] SMK SP
Actual Predicted Difference Actual Predicted Difference Actual Predicted Difference
(Cycles) (Cycles) (ms) (ms) (ms) (ms)

Eigenvalues 1,143,429 2,801,330 145% 4.67 5.80 24% 4.68 5.80 24%
Histogram 1,811,709 1,274,469 603% 0.11 0.61 455% 0.11 0.61 455%
MatrixMul 3642 4680 29% 0.52 2.14 389% 0.97 2.14 120%
Vectoradd 656 659 1% 0.24 2.47 930% 0.34 2.47 626%

3.5.3 SP Environment

To evaluate GPU hardware contention in the SP environment, the previous work chose the

ExecuteFirstLayer kernel from SqueezeNet, fwtBatch2Kernel from fastWalshTransform, and

vectorAdd. In this work, we chose vectorAdd as an enemy kernel from [149].

TABLE 3.5 shows the estimated WCET of the benchmark versus the MOET for the SP

environment. We observed from the TABLE that the prediction of WCET from different ML

models are same as in TABLE 3.4 because the features fed to ML models in this experiment

are the same as SMK. Only the labels change. The overestimation factor varies between 1.23

and 10.38.

The best ML model is chosen based on the R2 score. TABLE 3.6 shows the R2 score of each

ML model. A score close to one is the best fit for the model. We observed that EN has the

maximum value, followed by AdaBoost. The lowest is shown by the SVR, which represents the

worst model out of all. We observed that EN has the maximum value, followed by AdaBoost.

The lowest is shown by the SVR, which represents the worst model out of all. EN is the best

ML model in both SMK and SP environments, which performs better than others because it

has both the L1 and L2 regularization terms in the ints equation, as defined in chapter 2. The

L2 regularization helps to reduce the overfitting of the EN, and the L1 regularization helps to

select the features.
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3.5.4 Comparison with other policies

The two techniques, named dynamic using measurement based on high-water mark measure-

ments and hybrid through a static analytical model based on instrumentation point graphs

annotated with execution time, were presented in [19]. The approaches assumed that the

thread blocks were coming in waves and scheduled using a round-robin. The pessimistic result

on the GPU kernels using the approaches didn’t scale it for further use. In contrast to their

work, our approach doesn’t suffer from code coverage issues.

In TABLE 3.7, we present a comparison of the percentage differences in WCET estimation

between two different approaches: one presented in [19], termed as the ”hybrid approach,” and

our approach using two different environments, SMK and SP, as detailed in TABLE 3.4 and 3.5.

This comparison aims to evaluate the effectiveness of our proposed method against an existing

approach, shedding light on its strengths and weaknesses. The first column of TABLE 3.7 lists

the application names, while the second column displays the percentage difference using the

hybrid approach from [19], showcasing the disparity between actual and predicted WCET. The

third and fourth columns exhibit the percentage difference using the SMK and SP environments,

respectively, obtained from the data provided in TABLE 3.4 and 3.5. Our analysis reveals that

our approach outperforms the hybrid approach in some applications, while the latter proves

to be more effective in others. This observation underscores the importance of considering

various factors and methodologies in WCET estimation, as different applications may exhibit

varying characteristics that impact prediction accuracy differently. Notably, the percentage

differences obtained are considerable, suggesting they might not be suitable for direct use as

upper bounds. However, we emphasize the value of these numbers in the early stages of system

development. Despite their limitations, these estimates serve as valuable insights that can guide

system designers, preventing them from making overly pessimistic assumptions about WCET.

Understanding the limitations of WCET estimation methods is crucial for system designers to

make informed decisions about resource allocation, scheduling, and overall system performance.

While the presented percentage differences may not directly translate into precise upper bounds,

they offer valuable early-stage guidance, allowing designers to refine their strategies and uncover

areas for optimization.

TABLE 3.8 compares the estimated WCET using [62] and our approaches within both en-

vironments against the MOET. The applications examined include LBM and BFS from the

Rodina benchmark and NSICHNEU from the Mälardalen benchmark [52]. The [62] proposed

three distinct approaches for WCET estimation of GPU kernels, with GDivAn identified as

the most effective method. Our comparison with these approaches reveals that our methods
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Table 3.8: Comparison of approaches to estimate WCET using [62] with MOET

Application [62]
SMK SP MOET
(ms) (ms) (ms)

GDivAn random+ga random
(ms) (ms) (ms)

LBM 12028 1514 7255 1100 1300 150
BFS 1411 911 1128 500 300 80

NSICHNEU 12669 13333 2702 800 1600 210

consistently demonstrate a significantly reduced deviation from MOET. Our approaches are

remarkably close to MOET across all examined applications and environments. This suggests a

higher level of accuracy and reliability in our WCET predictions compared to the methodologies

proposed in [62]. This notable improvement could signify various factors, such as the sophisti-

cation of our modeling techniques, the quality of the data used for training, or the robustness

of our evaluation methodologies. Regardless of the specific reasons, the findings underscore

the efficacy and superiority of our approaches in estimating WCET, paving the way for more

dependable performance analysis and resource allocation in GPU kernel contexts.

Our approaches demonstrate significant promise in accurately estimating the WCET of

GPU kernels, particularly when compared to state-of-the-art methods. Notably, our techniques

achieve estimations that closely align with the MOET, indicating their efficacy in reliably cap-

turing worst-case scenarios. One of the key advantages of our approaches lies in their ability to

streamline the WCET estimation process, particularly in GPU kernel contexts. Unlike tradi-

tional methods that often involve complex setup procedures for worst-case environments, our

approaches leverage Machine Learning (ML) models to simplify and expedite the estimation

process. Our approaches can rapidly provide WCET estimations for any application within sec-

onds by training ML models on relevant data. This efficiency is particularly valuable when time

constraints are critical, enabling developers and system designers to make informed decisions

without investing extensive resources into repetitive environment setup procedures. Overall,

our approaches represent a significant advancement in WCET estimation methodologies, offer-

ing a compelling alternative to traditional techniques. Their ability to achieve close alignment

with MOET while simplifying the estimation process underscores their practicality and suit-

ability for real-world applications. By empowering developers with rapid and accurate WCET

estimations, our approaches facilitate better decision-making and enhance the reliability and

efficiency of systems utilizing GPU kernels.
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3.6 Summary

This chapter presented an approach to determine the WCET of the GPU applications using

the ML approach. The approach allows the victim and enemy kernel to execute concurrently,

which attempts to produce worst-case contention on shared GPU resources. The features are

the victim kernel instruction, and the label is WCET which is fed to our model to train it.

The model performance is evaluated on real benchmarks, and our approach result showed that

none of the ML models consistently outperforms the others on all benchmarks. Although our

approach does not offer safety guarantees, we observed that predicted WCETs are always higher

than any observed execution times for all benchmarks. Compared with traditional approaches,

our ML methodology minimizes resource consumption to estimate WCET, saving hours of

GPU execution. In most circumstances, our ML strategy decreases the time by 99% because

inferences only take seconds to forecast WCET. Although our approach does not offer safety

guarantees because of its empirical nature, we observed that predictedWCETs are always higher

than any observed execution times for all benchmarks, and the maximum overestimation factor

observed is 11x. Finally, WCET estimates for all benchmarks were calculated in seconds for

most benchmarks.

Although the benchmark results demonstrate the efficacy of our methods, they also open

up the possibility of investigating related problem paradigms. Could an application having

more than two execution times based on the critical level affect the WCET estimation on the

uniprocessor or multi/many-core processors? We would like to answer these questions in the

later part of this thesis.
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Chapter 4

Estimation of WCET on MCS

In Mixed-Criticality (MC) Systems, there is a trend of having multiple functionalities upon

a single shared computing platform for better cost and power efficiency. In this regard,

estimating the suitable optimistic WCET based on the different system modes is essential

to provide these functionalities. A single application is assigned multiple WCETs based

on the criticality of the system, such as safety-critical, mission-critical, and non-critical.

Determining the appropriate WCET in low critical mode is challenging and has been done

in a few research works due to its complexity.

We propose ESOMICS, a novel scheme, to obtain appropriate WCET for LO modes, in

which we first propose an analytical approach. This approach introduces a newly defined

metric, Lowest cycle Time for Majority of samples (LTM ) for WCET determination. We

then propose an ML-based approach for WCET estimation based on the application’s

source code analysis and the model training using a comprehensive data set. Our exper-

imental results show that the estimated WCET is close to the analytical approach for

all the benchmarks. On average, it exceeds 25% and 15% on the prediction cycle and

the metric, respectively. Our experimental findings also demonstrate that our approach

improves the utilization of cutting-edge MC systems by 14% and 7%, while the percentage

of task overrunning in a worst-case mode is 4% and 3% in both approaches, respectively.

In the rest of this chapter, the problem statement, motivational example and contributions

are presented in Section 4.1. Section 4.2 describes the related work in estimating WCET

with and without ML approaches. The application and system models are presented in

Section 4.3. In Section 4.4, we describe ESOMICS in detail, while our experimental results

have been described in Section 4.5. Finally, we conclude the chapter in Section 4.6.
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4.1 Introduction

A Mixed-Criticality (MC) system is commonly used in embedded systems to meet the cost,

space, and energy efficiency requirements of various applications, such as automotive, medical

devices, and avionics [14, 26, 51, 97]. These MC systems are designed to perform multiple

tasks with different criticality levels while ensuring the correct execution of these tasks. In

order to prevent catastrophic damages, the system should ensure that all High-Criticality (HC)

tasks are guaranteed to execute successfully before their deadlines while scheduling a large

number of Low-Criticality (LC) tasks to maximize the processor utilization and Quality-of-

Service (QoS) [26, 51, 119]. In conventional real-time systems, the tasks are scheduled based

on their pessimistic Worst-Case Execution Time (WCET) [145], which can be estimated by the

measurement-based, static analysis, and the hybrid approaches. Many tools and frameworks

are available as open source, and commercials, such as aiT [39], Chronos [93], Heptane [57], and

OTAWA [13], are used to determine the pessimistic WCET when the hardware architecture and

compiled binary code are available. However, most execution times of task samples are shorter

than conservative WCET, which leads to poor processor utilization and QoS in conventional

real-time systems [145].

In this regard, multiple WCETs are defined in MC systems corresponding to the different

criticality levels and the ongoing mode of operation [98]. Since there are different MC system

operational modes, it ensures that QoS and processor utilization are maximized in the low-

criticality mode (LO mode) while the constraints are preserved in the high-criticality mode (HI

mode). Initially, an MC system starts its operation in the LO mode while executing the tasks

based on the optimistic WCET. If the execution time of at least one HC task exceeds its op-

timistic WCET, the system mode changes from LO to HI mode. In such a scenario, all or

some LC tasks must be dropped/degraded to provide the processor computation capacity for

running the HC tasks and guarantee their correct execution before their deadlines. However, it

can drastically affect the service and cause significant performance loss of LC tasks. When the

gap between the pessimistic and optimistic WCETs is large, more tasks, such as LC tasks, are

scheduled at design-time. However, this can cause system mode switches to occur frequently

and, consequently, drop more tasks at run-time. When this gap is small, the overall processor

utilization decreases due to scheduling fewer tasks at design-time [120]. As can be realized,

the optimistic WCET is an essential factor in the design of MC systems. However, the major

problem of designing such MC systems is to guarantee the timing constraints of executing only

high-criticality tasks under very pessimistic assumptions and all tasks, including low-critical

ones, under less pessimistic assumptions. The suitable optimistic WCET of the given appli-
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cation is defined as the WCET, which maximizes the processor utilization and minimizes the

mode switches, which is observed by us through experimentation of the application distribution

graph. Hence, for the given application, if this WCET is known, we can define it as a suitable

optimistic WCET for the given application.

Motivational Example: Most previous research works set WCET opt based on the Aver-

age (AVG) execution cycle of the application [120] or fraction of the WCETpess [14, 51]. These

approaches may lead to poor processor utilization (while WCET opt is close to WCET pess),

or more mode switches (when there is a high gap between WCET opt and WCET pess). As

an example, Figure 4.1 shows the time distribution of a real application, ns from Mälardalen

benchmark [52], running on the Raspberry Pi 4 board. The X-axis represents the processor

clock cycles. For this application, the WCET pess is estimated to be 52531 cycles, using the

SWEET tool [95]. With setting the WCET opt as a percentage of WCET pess, many system

mode switches occur if we set WCETopt to WCETpess

32
and WCETpess

64
, but more LC tasks can be

scheduled in the system. On the other hand, if WCET opt is set to WCETpess

4
and WCETpess

8
, or

based on the average execution cycle, system mode switches are reduced, but poor utilization

occurs due to scheduling fewer LC tasks. However, if WCET opt is set to close the indigo line

(shown by Optimal WCET opt in the figure), both processor utilization and mode switches may

be improved compared to other approaches.

To address such a problem, we propose a novel scheme, ESOMICS (Estimation of Suitable

Optimistic WCET for MIxed-Criticality Systems), to obtain a suitable WCET opt for HC tasks

in order to improve QoS and utilization and reduce the number of mode switches. In this scheme,

an analytical approach is proposed to analyze the application time distributions, and then a new

metric is defined to determine the appropriate value of WCET opt while reducing the probability

of task overrunning. Based on the analysis, this chapter also proposes a Machine-Learning (ML)

approach, which can then be generalized to any embedded application. In this approach, the

model functionality and performance are evaluated based on the generated data sets to train

and validate different prediction techniques. To the best of our knowledge, this is the first work

that obtains WCET opt for MC tasks using the ML models while guaranteeing the real-time

constraints, improving the QoS and reducing the number of mode switches. Although we focus

on MC systems with two criticality levels, our scheme can be applied to an MC system with

several criticality levels and different level of task criticality are mentioned in D0-178C [124].

Contributions: The main contributions of this chapter are following:

• Introducing a new metric based on the WCET pess and execution time distribution and

conducting an extensive analysis of different applications through the new metric.
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Figure 4.1: Execution time distribution for an application from Mälardalen benchmark, running
on the Raspberry Pi 4 board.

• Proposing a data-driven approach to obtain WCET opt of MC tasks based on the ML

model and the newly defined metric.

• Improving the QoS and resource utilization by scheduling more LC tasks in the system

while reducing the number of task overruns.

• We implement ESOMICS for uni-processors using Raspberry Pi. Such an implementation

can easily be integrated with any measurement-based timing analysis for uni-processors.

• Our proposed scheme, with extensive experiments, outperforms the previous research

regarding the number of schedulable task sets and improving resource utilization. Our

approach is evaluated for various state-of-the-art MC systems to show the prospect of our

approach. Our implementation and all experimental data are publicly available.

Two fundamental concepts in MCS are low and high-criticality modes, as well as high and

low-criticality tasks.

• Low-Criticality Mode:
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– In low-criticality mode, the system operates with relaxed constraints and can provide

best-effort execution for low criticality tasks.

– Low-criticality tasks are executed with reduced priority or resources compared to

high criticality tasks.

– The goal of low-criticality mode is to maximize system utilization and efficiency

while meeting the safety requirements of high criticality tasks.

• High-Criticality Mode:

– In high-criticality mode, the system operates under strict constraints to ensure the

correct and timely execution of high- criticality tasks.

– High-criticality tasks are allocated sufficient resources and given higher priority to

meet their stringent safety requirements.

– The transition to high-criticality mode may occur in response to changes in the

system’s operating conditions or triggered by specific events or deadlines.

• High-Criticality Tasks:

– High-criticality tasks are characterized by stringent safety requirements, where fail-

ure to meet deadlines or correct execution can lead to catastrophic consequences.

– Examples of high-criticality tasks include control tasks in autonomous vehicles, flight

control systems in aircraft, medical monitoring systems, and emergency shutdown

systems in industrial plants.

– High-criticality tasks are allocated higher priority, resources, and redundancy to

ensure their correct and timely execution, even under adverse conditions.

• Low-Criticality Tasks:

– Tasks are less critical for system operation or safety and can tolerate longer response

times or occasional delays without causing system failure or hazards.

– User interface tasks such as displaying information on a screen or responding to user

inputs. Background tasks like system maintenance, logging, or non-critical data

processing.

– Low-criticality tasks are scheduled around high criticality tasks, utilizing leftover sys-

tem resources. They may be preempted or delayed to accommodate high-criticality

tasks when necessary.
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4.2 Related Work

There are various research works in the embedded real-time systems area that have focused on

application timing analysis, like estimating WCETs. In order to explain the approaches briefly,

the estimation of WCET using the implicit path enumeration techniques by modeling the

control flow and the architecture using integer linear programming has been done in [12, 25, 94].

The different components of the architecture vary the execution time a lot, and the system’s

cache [6], branch prediction [15], and pipeline [92] effects have been studied in detail. The

analysis of different WCET tools with their advantages and disadvantages has been presented

in [145]. Once you have fixed the architecture and application, the next important factor is

worst-case data which triggers WCET, as discussed in [82]. The authors presented an approach

using a GA and ML model to estimate worst-case data for the application efficiently.

Besides, applying ML and artificial intelligence to estimate WCET is also prevalent in the

research, as these are emerging technology in every field of our lives because of their ability to

solve complicated problems with better accuracy. Altenbernd P. et al. [7] proposed a method

to estimate the WCET of the application using source-level timing analysis. Most of the

approaches, such as [22, 66, 96], used an ML model to estimate WCET from the application’s

source or assembly level—the work using the neural networks approach presented in [80]. The

authors in [8] proposed WE-HML, a hybrid WCET estimation technique for architecture with

caches in which the longest path is estimated using static techniques, whereas the ML model

is used to determine the WCET of basic blocks. The contention prediction using Quantile

Neural Networks in multiprocessor proposed in [23]. The proposed approach reduces the risk

of detecting timing misconfiguration in late phases of the development process that would

result in costly changes to the system design. The author in [35] proposed ACETONE which

is a predictable programming framework for safety-critical systems using ML models. The

proposed approach is capable of generating readable and traceable code.

From the MC system design perspective, as mentioned in the Introduction section of this

chapter, different levels of WCETs are defined for each application to guarantee the real-

time constraints of tasks with different criticality levels. In order to estimate the pessimistic

WCETs, most of the above approaches can be employed. However, few works have addressed

determining the WCET for lower criticality levels, like determining the WCET opt in dual-

criticality systems. As an example, [14, 51, 97] have determined the WCET opt as a percentage

of WCET pess. In addition, in [120], researchers have claimed that obtaining the WCET opt as a

percentage of WCET pess is not an efficient method; therefore, they determined the WCET opt

based on Average-Case Execution Time (ACET) by using the Chebyshev’s theorem. Their
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approach estimates the mode switching probability as very pessimistic about being applied

to any application. However, since real-time applications are known in advance in embedded

systems, they can be analyzed at design-time for WCET opt determination. Besides, some

approaches [48, 63] determined the WCET opt at run-time based on the application behavior.

However, these methods’ goal is to postpone the mode switches for a long time to guarantee

the minimum QoS, not improving the QoS by scheduling more LC tasks in the system.

As a result, we propose a novel approach to first analyze the application’s timing distribution

at design-time and then determine an appropriate value of WCET opt based on the analysis

through ML techniques to improve the QoS and reduce the probability of mode switching.

4.3 Application and System Model

We consider a dual-criticality system with two distinct levels of criticality, referred to as LC

denoting low criticality, and HC denoting high criticality, respectively. The terms applications

and tasks have been used interchangeably in work. There are n MC tasks τ={τ1, ..., τn} running

on uniprocessor systems, and other than the processor, the tasks are independent and do not

share any resources. Each task τi has a period Pi and a relative deadline Di. A pair of WCETs

(WCETLO
i and WCETHI

i ) is used to indicate its worst-case computation requirements in the

LO and HI running modes, just like in the traditional MC model. We can represent each task

as a tuple (Pi, Di, ζi, WCET opt
i , WCET pess

i ), where:

• Pi is the period of the τi.

• Di is the relative deadline of task τi, Di=Pi.

• ζi is the set of criticality level.

• WCET opt
i (WCET pess

i ) denotes the WCET of the tasks τi in LO(HI) mode.

In this system model, we have two WCETs for each HC task τi where WCET pess
i ≥

WCET opt
i . The utilization of HC and LC tasks is defined as uLO

i =
WCET opt

i

Pi
and uHI

i =
WCET pess

i

Pi
, respectively. The system begins with operating in LO mode, with all tasks (LC and

HC) being executed before their deadlines. Whenever an HC task exceeds its WCET opt
i , the

system switches from LO to HI mode immediately to provide all the compute resources to HC

tasks to guarantee their execution to prevent any damage, and all the LC tasks are possibly

guaranteed with degraded resources.
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4.4 Proposed Approach

As mentioned earlier, estimating the suitable WCETopt for HC tasks is a significant challenge.

To address it, the proposed approach designs the MC systems and analyzes the tasks of the

application to choose the suitable WCETopt based on the ML model, which improves the task

overrun and executes more LC tasks. Our data-driven and analytical approaches are divided

into many steps. The analytical phase is presented in Subsection 4.4.1. The first step in the

data-driven approach is the training phase, explained in Subsection 4.4.2.1. The second step is

the inference phase described in Subsection 4.4.2.2. The generation of training data is explained

in Subsection 4.4.3. The ESOMICS Algorithm is presented in the Subsection 4.4.4. The system

objective analysis is discussed in Subsection 4.4.5.

4.4.1 Analytical Approach

Determining the appropriate value of WCET opt is essential in improving the timing behavior of

MC systems, mode switching probability, and utilization. Therefore, supposing the application

function is known, we propose an analytical approach that relies on an extensive experiment-

driven method to establish a new metric for determining the appropriate WCET opt for each

HC task. Fig. 4.2a shows the execution distribution of ns application from the Mälardalen

benchmark, with 1000 instances, presented in the motivational example of Section 4. The suit-

able WCET opt corresponds to the minimum cycle in which the majority of sample executions

are less than it. In Fig. 4.2a, α(t) is the ratio of frequency of number of samples executed

at time t to the total execution frequency/Sample (presented in Eq. (4.1)). To this end, we

introduce a new metric, Lowest cycle Time for Majority of samples (LTM ), in Eq. (4.2) to

obtain WCET opt.

α(t) =
Frequency of # of Samples Executed at Time(t)

Total Sample
(4.1)

LTM(t) = α(t) ∗WCET curr(t) + (1− α(t)) ∗WCET pess (4.2)

where WCETcurr is the execution cycle of the task at time t. The WCETpess of the application

is constant and obtained from SWEET tool [95]. Eq. (4.2) illustrates that LTM at time t equals

the scenario in which α percent of samples complete execution before WCET curr, while the

remaining (1 − α) complete before WCET pess . We focus on finding the minimum time cycle,

which covers the maximum execution distribution to improve processor utilization and reduce

the mode switches.

To provide a clear demonstration, in Fig. 4.2, when considering α(t)=0.98, thenWCETcurr =
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Figure 4.2: An application analysis

2850 cycles and LTM=1× 103. If α(t)=0.99, then WCETcurr=5705 cycles and LTM=6× 103.

Indeed, in this case, the WCETcurr appears to be more pessimistic, and higher LTM value,

compared to the previous scenario, and leads to poor processor utilization and scheduling fewer

LC tasks in the system. Avoiding such pessimism is crucial when designing systems, as even

1% increase in α can result in nearly doubling the execution cycles. Any values of α below 98%

result in an increase in mode switches, which is undesirable as it hinders the desired QoS. Our

goal is to determine the minimum value of LTM as it corresponds to the proper WCETopt ,

shown in Eq. (4.3).

WCET analy = WCET curr(t)|LTM is minimum (4.3)

WCETanaly represents that for any application, the cycle corresponding to the minimum

LTM value serves as the optimal cycle for the WCETopt since it signifies the high processor

utilization and fewer mode switches, as observed in experiments.

Algorithm 2 shows the pseudo-code of the analytical approach. As inputs, the algorithm

takes the application for which we aim to find WCET analy, along with the platform and the

variable N, which denotes the total number of application executions. The output is the ap-

plication’s WCET analy. The procedure commences by executing the application N times to

measure both the frequency for each cycle (lines 2-4). For each time from one to WCET pess, α

and LTM values are calculated (lines 7,8). The calculated LTM is compared with the variable

LTMmin value, and if the variable is changed, the cycle of this lower LTM value is assigned

to T opt (lines 9-11). This process is iteratively repeated until we find the optimal value of T opt

and assign it to WCET analy (line 13).
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Algorithm 2 Analytical Approach
Input: Application, Single Processor Platform, N
Output: WCET analy

1: Procedure AnalyticalMethod()
2: for i =1 to N: do
3: {freq} = execute(Application)
4: end for
5: Topt = WCET pess; LTMmin = ∞;
6: for T = 1 to WCET pess do
7: α(T ) = freq(T ) / Total Frequency {Eq. 4.1}
8: LTM(T ) = α(T ) ∗ T + (1− α(T )) ∗WCET pess {Eq. 4.2}
9: if LTMmin > LTM(T ) then
10: LTMmin = LTM(T); Topt = T ;
11: end if
12: end for
13: WCET analy = Topt

14: end Procedure

4.4.2 ML-based Approach

DeterminingWCET analy for each application through repeated executions can be time-consuming

and challenging. Therefore, we propose an ML-based approach, which provides a more efficient

alternative by enabling us to run each application only once to obtain its WCETopt . This

reduces the timing overhead, making it a practical, and time-saving solution for obtaining

WCETopt without needing multiple executions.

4.4.2.1 Training of the Models

The training phase of the ML-based approach is performed once per target architecture. It is

mainly focused on learning the timing model of the processor, as shown in Fig. 4.3. Firstly, the

selection of training programs has been made through GENE [140]. It is a tool that provides

both WCET benchmarks as well as their flow facts. It is able to achieve this because instead of

analyzing existing programs, the tool generates new benchmarks by relying on small building

blocks (for which the flow facts are known) and combining them in a way that allows the tool

to determine the flow facts of the resulting complex benchmark automatically. Typical design

and implementation patterns that have been taken from WCET benchmark suites and current

real-world applications serve as the foundation for Gene’s creation of realistic benchmarks. The

selected programs are given to SWEET tool [95] to extract the features. The main function of

SWEET is flow analysis, whose results are flow facts, i.e., information about loop bounds and

infeasible paths in the program. It analyzes programs in ALF format, which is an intermediate

program language format specially developed for flow analysis. The chosen program is compiled

and linked in the third step to generate the execution cycle as a label. Besides, WCET analy
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Table 4.1: Extracted Features

# addition operations # division operations # subtraction operations
# logic operations # function calls # return statements
# load operations # store operations # multiplication operations
# shift operations # jump statements # comparison operations

Programs

Features 
Extraction 
(SWEET)

Training ML Model
Basic Block 
Execution

Figure 4.3: Learning of the ESOMICS

for any given application is fed up to ML models in this training phase as a label for a dataset.

In the fourth step, features and labels are fed to the ML model for training. We have used five

ML models trained on the large data set, which covers a large variety of code structures in real

code. After training, the various ML algorithms can estimate different programs’ WCET opt.

ML models are trained using the numerical quantities called features, and some are listed in

TABLE 4.1. To understand how the training part works, we need to explore some statistics

behind it. As mentioned, we already have features and labels for each training example. We

assume each training example has n instructions i1, ...., in as features with the total observation

of size m. Different training example has measured observed cycle T = (T1, ..., Tm). The model

then predicts ICmxn ∗ Wnx1, where IC is an m × n matrix whose rows are observed array of

instruction counts and, W = (w1, ..., wn) is an array of cycles that minimizes the deviation from

real. The main goal here is to reduce the IC ∗W from T to get the best model, as explained

in [7]. The standard ML models have been used for the training in this work, described in

detail in the next section.

4.4.2.2 Inference of the Models

The model evaluation is shown in Fig. 4.4. Firstly, benchmark programs or unseen programs not

used during the training phase are carefully selected. These selected programs are utilized to

infer and evaluate the model. The features are extracted for the selected benchmark programs

using the SWEET tool [95]. These features are given to the trained ML model to predict

WCETopt .

We have different trained ML models. WCETML is obtained from the best-chosen prediction
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Figure 4.4: Evaluation of the ESOMICS
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Figure 4.5: An overview of analytical and inference approaches

model. Once the different ML models have been trained, we require a parameter to determine

the model that performs best and provides superior accuracy. This is achieved in our case

by Mean Square Error (MSE) to find the model that gives the slightest error on training and

validation data. The MSE of each model is calculated using predicted and observed data. To

validate whether the chosen model is best, we have compared it with WCETanaly , which needs

to be carefully examined through experiments.

Fig. 4.5 shows a summary to provide a comprehensive overview of analytical and ML-based

approaches. The scheme comprises several distinct stages, which are outlined below:

• Stage I : The selection of the programs is made in this stage. This program is an unseen

program or benchmark whose WCETopt we are eager to determine.

• Stage II : The features are extracted from the selected programs using SWEET tool [95].

The features are given to the trained ML models in the next step. The trained model

predicts the WCETML, which is equivalent to WCETopt .

• Stage III : The same selected programs are executed different numbers of times using

different inputs to generate the execution distribution plot. The generated plot in the

next step is observed with the derived Eq. (4.2) to get WCETanaly .

• Stage IV : The WCETMLs and WCETanaly for stages II and III are compared to find the

proper WCETopt . The comparison is essential due to the variability in the WCETML

values obtained from different trained ML models in Stage II. The primary objective
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is to identify the WCETopt value from an ML model that its value closely aligns with

WCETanaly .

Stage III illustrates how good the proposed ML-based approach is in terms of accuracy.

Note that the results of our approach, which is deployed on the target hardware, do not need

to perform at this stage. A comprehensive analysis of approaches has been done in the next

section.

4.4.3 Generation of Training Data

Due to a lack of training benchmarks, ML methods utilized in earlier research articles [7,

66, 80, 84] for WCET prediction have experienced constraints. This restriction results from

the training data being too few and maybe too undifferentiated, which could lead to worse

training quality. Our strategy, which is similar to the one described in [140], [8], solves the

problem by using a sizable dataset of automatically created basic blocks as training data. By

utilizing a more extensive and diverse dataset, our approach aims to improve the training quality

and enhance the accuracy of WCET estimation. The generated code employs all standard

basic kinds, including arrays of basic types and char, short, int, and long in both signed and

unsigned variants. The most popular C operations are addressed, including binary and unary

operators on booleans, array indexing, shift and rotate operations, and arithmetic and logical

operations. Listing 1 shows an example of generated application used for training with the help

of GENE [140].

The first line in the main function is a call to a special register for measuring the number

of cycles taken by the given application. It contains a set of variables and applies operations

on these variables. It also contains if statements to cover branch instructions. However, the

generator ensures that there is no data-dependent execution. Similarly, the other generated

application contains different statements and operations. With the help of the SWEET tool,

we extract the features and using a special register, and we measure the execution time of these

generated applications.

1 int main(){

2 var_2 = ( uzero != uone ) ? var_2 : var_1;

3 var_2 = array_0[array_index] - array_0[array_index ];

4 if (zero < one) {

5 array_0[array_index] = var_2 == small_int;

6 var_2 = var_2 * var_2;

7 }

8 return 0;
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Algorithm 3 ESOMICS Approach
Input: Applications, Single Processor Platform, n
Output: WCET opt

1: Procedure ESOMICS()
2: cg = DataGenerator(n)
3: features = SWEET (cg)
4: labels = AnalyticalMethod(cg)
5: MLFunc = Training(features,labels)
6: WCET opt = Testing(MLFunc(Application))
7: end Procedure

9 }

Listing 4.1: Example of generated application for training

4.4.4 ESOMICS Algorithm

Algorithm 3 outlines the pseudo-code of ESOMICS scheme, which includes code generation,

analytical and ML-based approaches. As inputs, the algorithm takes the applications, platform,

and variable n, representing the total dataset generated for training ML models. WCET opts are

the output. The procedure begins with variable cg, which is assigned with running the function

DataGenerator (line 2). The DataGenerator function uses GENE to generate dataset. The

created dataset is then fed to the SWEET tool [95] to extract the features (line 3). The same

dataset is then fed to AnalyticalMethod to generate the labels (line 4). Once the features and

labels are extracted, it is fed for Training to ML models (line 5). After the training phase, the

function Testing is ready to generate WCET opt for each application (line 6).

4.4.5 System Objectives Analysis

Improving the timing behavior of the system is driven by the following two primary objec-

tives [120]:

• Resource Utilization is improved by achieving a substantial increase in the utilization

that can be assigned to LC tasks in the LO mode (ULO
LC ). ULO

LC is upper-bounded by the

schedulability constraints in both LO and HI modes [14, 120] (shown in Eq. (4.4)). ULO
HC

is computed based on the WCET opt.

ULO
LC ≤ min{1− ULO

HC ,
1− UHI

HC

1− UHI
HC + ULO

HC

} (4.4)

• Mode Switching Probability Reduction has a beneficial effect on the performance or func-

tionality of MC systems by reducing frequent drops of LC tasks in the HI mode. PMS
i
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is the exceeding probability of task τi from WCET opt, and PMS
Sys is the mode switching

probability of the system. Since tasks are independent, PMS
Sys is computed as follows [120]:

PMS
Sys = 1−

∏
ζi∈HC

(1− PMS
i ) (4.5)

To improve the system timing behavior, (ULO
LC × (1 − PMS

Sys )) equation should be maxi-

mized [120]. As a result, an approach capable of obtaining appropriate values for WCET opt,

should yield a higher value for this equation.

4.5 Evaluation

We presented the experimental setup to evaluate the effectiveness of our proposed scheme for the

Raspberry Pi 4 platform in this Section. We described the hardware and software environment

used in the experiments. We evaluated our scheme on the real benchmarks called the Mälardalen

benchmark suite. The Hardware platform and software environments are discussed in detail in

Subsection 4.5.1. The ESOMICS evaluation with results are presented in the Subsection 4.5.2.

The comparison with other policies is explained in Subsection 4.5.3.

4.5.1 Hardware Platform and Software Environments

The Raspberry pi model B 4 relies on a Broadcom BCM2711 SoC, which is based on a 1.5 GHz

64-bit quad-core ARM Cortex-A72 processor, a 2-wide superscalar processor. The architecture

has a specific private L1 cache and a 1 MB shared L2 cache. The Raspbian Lite Operating

System (OS) runs on the Raspberry 4, which is a Linux kernel version which better than other

OS in terms of overhead generated on the timing. The compiled code is then executed on a

specific core. When compiling the benchmarks, the compiler optimizations were disabled to

facilitate the flow of information during the WCET analysis. This feature will be revisited in

future work and is also open to research.

A total of 15000 programs were generated for the training of the model. We have made

sure that the construction and selection of the training program cover all the instructions for

the ARM Cortex-A72 processor. As the training process only needs to be completed once for

each architecture and can easily be carried out simultaneously on numerous boards, we do not

consider the delay in running the ML model. The training programs are executed on the ARM

cortex processor to measure the CPU cycle, which is used as labels. The same training programs

are translated into virtual instructions using SWEET, and features are extracted. The predic-

tion model quality depends on the input training data, which needs to be biased-free as much
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Table 4.2: Experimented ML Algorithm

Algorithm Description
Decision Tree (DT) A single decision tree
Random Forest (RF) A multitude of decision tree
K-Nearest Neighbors (KNN) K-Nearest Neighbors regression
Adaptive Boosting (AdaBoost) Boosting algorithm with simpler dataset
Gradient Boosting (GB) Boosting algorithm with complex dataset

as possible. The features need to be extracted carefully as it leads to the bias in the system. We

also normalized our data values in the range of 0 to 1 to avoid the prediction model’s inclination

towards the features having larger values. WCET estimation is evaluated on the ML algorithm

provided by the Scikit library. Preparatory experiments made us select the five algorithms that

gave the best result. A selection of five ML algorithms based on Mälardalen benchmark [52],

such as Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor’s (KNN), AdaBoost,

and Gradient Boosting (GB), has been made as shown in Table 4.2. The abbreviations DT,

RF, KNN, AdaBoost, and GB will be used throughout the remainder of the chapter in place

of the full names. None of the above methods outperforms the others for all the benchmarks.

However, the model that gives better accuracy is chosen as the best model. The 5 ML algo-

rithms’ training took about 75 minutes to complete on a macOS operating on a MacBook Air

with a 1.8 GHz Dual-Core Intel Core i5 processor.

4.5.2 ESOMICS Evaluation

Table 4.3 reports the predicted WCETopt for the seven benchmarks using five ML models and

the analytical approach presented in Section 4. The first column represents the different bench-

marks used in the experiment. The column from second to fifth represents the predicted cycles

for different ML approaches obtained using our trained ML models. These values represent

how many cycles each prediction model takes to give WCETopt . The last column represents

the observed cycles using the analytical approach. This value is obtained by equation 2, in

which each application is executed to find the cycle at which LTM is minimum. However,

the best model DT overestimates the WCETopt by 25% on average on the given benchmarks,

which shows promising results compared to other prediction models and we keep the analytical

approach as the base for the calculation of percentage. This is because the observed cycle from

the analytical approach is the suitable WCETopt , and our goal here is to predict that value as

close to it.

Table 4.4 shows the percentage deviation between the Analytical and ML approach on the

metric LTM given in Eq. 4.2. The first column represents the benchmark’s name. The second
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Table 4.3: Predicted Cycle using ML and Observed Cycle using Analytical approach for the
Mälardalen benchmark

Predicted Cycle Observed Cycle

Benchmarks DT RF KNN AdaBoost GB Analy. Approach

cnt 1,875 3,832 841 1,000 11,400 1,616
compress 5,175 4,047 1,010 1,069 1,328 4,797

duff 5,175 3,904 1,041 1,015 18,582 3,597
expint 1,109 1,310 845 1,008 6,811 781
fdct 11,012 5,732 979 1,791 76,308 6,371

insertsort 1,356 1,181 1,073 992 62,364 1,265
ns 5,175 3,844 954 1,015 15,129 2,763

Table 4.4: Percentage Deviation between Analytical and Best ML approach for the Mälardalen
benchmark on the metric LTM

Benchmarks Analy. Approach ML Approach % Deviation
cnt 1,78,909 1,98,884 10.04%

compress 2,13,488 2,19,159 2.58%
duff 4,47,067 5,62,772 20.55%

expint 2,50,414 2,76,326 9.37%
fdct 6,68,570 11,05,879 39.54%

insertsort 1,28,717 1,35,907 5.15%
ns 5,10,209 6,73,774 24.27%

and third columns are the LTM values from the analytical approach and the best prediction

model from the ML approach. The percentage deviation between them is shown in the fourth

column. We observed from the table that the deviation between the above two is very minimal,

and Our prediction model is the best choice of all the approaches to set WCETopt because,

in the worst-case scenario, the maximum and minimum percentage deviation is 39% and 2%,

respectively. The average percentage deviation reported for these benchmarks is 15%.

Figure 4.6 shows the analytical analysis of the duff application from Mälardalen benchmarks

using the metric presented in Eq. 4.2. Figure 4.6a represents the execution distribution on the

Y-axis, and the clock cycle is on the X-axis. The vertical line on the graph represents the

average, analytical (Exp Optw means experimental WCETopt from Analytical approach), and

maximal observed cycles for the application in the color green, red and brown, respectively. The

LTM value is represented on the Y-axis, and the clock cycle is on the X-axis of Figure 4.6b.

The red and magenta vertical lines represent the analytical and best ML model intersecting

the LTM on the Y-axis. We observed that both lines are close to each other and proving our
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Table 4.5: Comparison between ACET and WCET of different applications

Benchmarks
ACET
(Cycle)

Pessimistic-
WCET (Cycle)

Standard-Deviation
(Cycle)

Percentage (%) of Samples that Overruns if the Optimistic WCET is set to:

ACET DT RF KNN AdaBoost Gradient Boosting

cnt 1,441 20,849 2.30× 102 24.20 0.7 0.2 100.00 100.00 100.00
compress 4,268 15,640 7.67× 102 27.10 2.7 73.5 100.00 100.00 100.00

duff 2,766 40,000 10.38× 102 29.9 1.3 1.9 100.00 100.00 100.00
expint 398 13,737 1.73× 102 37.0 0.3 0.2 0.3 0.3 100.00
fdct 5,845 16,861 9.02× 102 30.3 1.1 58.1 100.00 100.00 100.00

insertsort 1,219 4,433 1.40× 102 45.4 0.1 100.00 100.00 100.00 100.00
ns 1,714 52,531 16.94× 102 49.3 21.0 49.3 96.1 95.4 0.1

(a) Frequency distribution
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Figure 4.6: Analysis of duff application

approach to be suitable for optimistic WCET. We have only shown one application analysis

here, and the remaining application analysis is shown in the appendix Section A.

We executed 1000 instances of seven applications, and the ACET and WCET of them in

terms of CPU cycle are reported in Table 4.5. The standard deviation of each application is

also presented. WCET of each application is estimated by SWEET. We observed that for each

application, how many instances violate the WCETopt when it is set to ACET or the predicted

cycle from the ML model.

We observed from the table that KNN and AdaBoost is not appropriate parameter to

set WCETopt . For instance, the mode-switching probability for applications countnonnegative

(cnt), compress, and insertion sort is 100%, while it is less than 1% for expint. Similarly, this

is the case with Gradient Boosting. On the other hand, when the WCETopt is set to ACET,

the mode-switching probability behavior is easier to predict. Too many system mode changes,

however, result from just setting WCETopt equal to ACET. However, When we set WCETopt

to Decision Tree, the probability of mode switching is very minimal, and processor utilization

is improved because more LC tasks are allowed to execute without degrading the QoS. It is
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Table 4.6: Percentage of tasks overruns for different approaches

Benchmarks Analy. Approach ML Approach [14] [51] [98] [120]
cnt 0.9% 0.7% 0.1% 100.0% 0.0% 0.3%

compress 4.3% 2.7% 96.1% 100.0% 1.4% 0.4%
duff 2.4% 1.3% 0.6% 68.7% 0.1% 0.2%

expint 0.5% 0.3% 0.0% 0.3% 0.0% 0.1%
fdct 3.2% 1.1% 100.0% 100.0% 2.5% 0.6%

insertsort 0.7% 0.1% 100.0% 100.0% 0.0% 0.0%
ns 2.0% 1.2% 0.0% 1.7% 0.0% 0.0%

PMS
Sys 13.24% 7.19% 100% 100% 3.96% 1.59%

also observed that in the case of DT, the maximum percentage of the sample overrun is 21% in

the worst scenario. To evaluate whether our prediction model is accurate, we have compared

it with our analytical approach.

4.5.3 Comparison with other policies

We compare our method with state-of-the-art approaches in terms of estimating WCETopt ,

processor utilization, and percentage of tasks overrun. As discussed in Section 2, most of the

state-of-the-art research has defined WCETopt as a ratio of WCETpess . For instance, if we

define λ = WCETopt

WCETpess , the ratio of these two values provides insight into the degree of variation

or uncertainty in task execution times within the system. A higher ratio indicates greater vari-

ability or uncertainty, while a lower ratio suggests more predictable and deterministic behavior.

The researchers in [98] have assigned λ ∈ [ 1
2.5

, 1
1.5

] in their experiments. Two different ranges

for λ have been assigned λ ∈ [1
4
, 1] and λ ∈ [1

8
, 1] in research [14]. Different amount of ranges

have been assigned for λ = { 1
16
, 1
8
, 1
4
, 1
2
, 1} in research [51]. Since the method for calculating

WCET is the same for all articles, We select [120] as the standard research methodology for

the experiments. In our method, WCETopt is chosen from the best prediction model trained

on large data set once for the target architecture. The trained model is then used to predict

WCETopt for unseen applications. In Ranjbar’s approach [120], the WCETopt is based on the

Chebyshev theorem using ACET and the standard deviation of the application with tuning

parameter n. The optimal n value in our work is set to 8. Figure 4.7 shows the comparison

of the estimated WCETopt between our and the state-of-the-art approach. We observed that

our analytical and data-driven approach shows appropriate WCETopt estimation in comparison

with other approaches. The major drawback of [120] is to tune the n parameter and also needs

to execute each application which is not the case in our approach. Once the model is trained,

it can be used multiple times for any application to estimate the WCETopt .
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Figure 4.7: Comparison of different approaches for determining WCETopt

Table 4.6 and Figure 4.8 show the percentage of tasks overrun out of 1000 instances of the

applications by different approaches if we set WCETopt according to their methods and the

utilization of the system, respectively. We observed that in [98] and [120], the percentage of

overrun is minimum, corresponding to less mode switching, but the processor utilization also

decreases the authors in both approaches choose the WCETopt to be too pessimistic. In [14]

and [51], we observed that the percentage of overrun is maximum, corresponding to more mode

switching, but processor utilization increases because, in both approaches, the chosen WCETopt

is too optimistic. Therefore choosing the suitable WETopt is paramount for avoiding more mode

switches and less processor utilization of the system. Our approaches have achieved the trade-off

between less mode switching and more processor utilization. The percentage of tasks overrun

83



0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0.2
0.25

0.3
0.35

0.4

0.45
0.5

Analyt ML

Different Approaches

Utilization System Goal

𝑼
𝑳𝑪𝑳𝑶

𝑼
𝑳𝑪 𝑳𝑶×

(𝟏
−
𝑷
𝑺𝒚𝒔
𝑴
𝑺)

U!"!#×(1− P$%&'$)

[120][98][51][14]

Figure 4.8: ULO
LC and system goal based on two objectives for different approaches

in the worst-case scenario for the analytical and ML approach is 4% and 3%, respectively. The

improvement of processor utilization is 14% and 7% compared with other policies using our

analytical and ML approaches. The reason for having better processor utilization and fewer

mode switches in our approaches is because of estimating the suitable WCETopt for HC tasks

and executing more tasks in the systems.

4.6 Summary

In this chapter, we presented ESOMICS, an approach that can be used to predict WCETopt

using machine learning models. The model estimates WCETopt from the source code of the

applications, and our analytical approach verify its correctness using the newly defined metric

LTM. Features are generated using the SWEET tool, i.e., the number of statements and

operations in the source code, which are fed into our ML models to predict WCET after

scaling data. We demonstrate the model for ARM processors. We have used the Scikit library

to implement all the ML models. The model performance is evaluated on real benchmarks,

and our approach outperforms all the previous research in terms of estimating appropriate

optimistic WCET, system utilization, and percentage of tasks overrun. The proposed scheme,

on average, exceeds 25% and 15% on the prediction cycle and the LTM metric, respectively,

on the benchmarks. We investigated the trade-off between the percentage of tasks overrun and

processor utilization which is improved by 14% and 7% while percentage of task overrunning

in a worst-case mode is 4% and 3% in both analytical and ML approaches, respectively.

We believe that machine learning models can be applied to improve these results further.

Different neural networks like Graph Neural Networks (GNN) and Recurrent Neural Networks
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(RNN) can be used to get better accuracy on the performance of the proposed methodology.

This is a subject for future research because it has good potential for WCET analysis.
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Chapter 5

Estimation of Worst-Case Data for

WCET

Temporal Verification of Real-Time and Embedded Systems requires the determination

of Worst-Case Execution Time (WCET). The strict timing requirements set by the regu-

lations are met by the design of these systems. A system’s delay resulting from failure to

meet the deadline will cause catastrophic outcomes. The worst-case data, which provides

the maximum execution time, is essential for WCET estimation. The complexity of an

evolutionary algorithm requires the use of several computational resources.

In this chapter, we present a novel method to replace the simulator-based actual execution

with a predictive model trained using the samples acquired on the simulator. This method

reduces the overall time required to generate Worst-Case Data. Different machine learning

models are trained to integrate with genetic algorithms. Our machine-learning models are

created using the Pygad Framework. The feasibility of the proposed approach is validated

using benchmarks from different domains. The results show the speedup in the generation

of Worst-Case Data up to 24 times, and the best accuracy achieved is 98%.

In the rest of chapter, the problem statement, motivational example and contributions

are presented in Section 5.1. Section 5.2 describes evolutionary techniques for testing

real-time systems. Section 5.3 elaborates our methodology to generate the worst-case

data. Section 5.4 describes the experimental setup and the selection of certain specific

parameters during experiments. The evaluation of machine learning models are presented

in Section 5.5. Finally, we conclude the chapter in Section 5.6.
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5.1 Introduction

Real-Time and Embedded Systems play an essential role in our lives. We are surrounded

by control systems like railways, automotive, avionics, telecommunications, and medical care.

Our lives depend on them; therefore, making it a reliable system is of paramount importance.

WCET is the maximum execution time an application takes to complete. Estimating WCET

[145] is a difficult task as it depends not only on the architecture configuration on which we

are executing the application but also on the input we are providing. The input data which

produces the maximum execution time plays a vital role in estimating the WCET [76]. Once

we fix the hardware architecture and the application, the next thing is finding the input data

that produces WCET. Traditionally, the Measurement and the Static approaches are used to

estimate the WCET. In the Measurement approach, the application is executed on the hardware

or the simulator to measure the execution time, but a guarantee of WCET is not possible.

Whereas, in the Static approach, an analytical method is used to measure the execution time,

but it overestimates the result too [122]. Therefore, evolutionary techniques such as Genetic

Algorithms (GA) have shown promising results in pruning the vast search space. In general

terms, an optimization problem involves searching for the worst-case input data points from

an enormous input space. The search for data points is then refined based on specific fitness

evaluation criteria [78].

Multiple fitness evaluations are involved in the GA evolution process, which usually requires

several executions of applications on the target hardware or its simulator. The availability of

target hardware for early system design phases can be challenging [7, 22, 79]. The execution of

a given software or application on the simulator can also be time-consuming. Executions are

typically cumbersome and require significant resources to complete. Therefore, there is a need

to create such models that can minimize the time and resource-intensive nature of the execution.

This motivated the researchers to ponder this issue. So, our prediction model eliminates the

need for hardware or a simulator for fitness evaluation. As a result, the temporal verification

time can be reduced drastically.

Different machine learning models can be used in the GA evolution process [5]. In this

chapter, we present a prediction model that can be used to identify the execution time of an

application. The model should be selected according to the complexity and type of the appli-

cation problem. Some typical examples of machine learning models used in this chapter are

Linear Regression [47], Polynomial Regression (2nd Degree) [107], Support Vector Regression

(Linear kernel and RBF kernel) [129], Tree Regression [150], Forest Regression [135], K-Nearest

Neighbors Regression [77] and Ridge Regression [101]. The initial results for ANN as a pre-
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diction model in a GA-based test data generation methodology are presented in [127]. The

prediction models have been used in real-time and embedded systems for many years, their use

in timing analysis is still unexplored. Therefore, a detailed study of these models is needed to

verify their correctness.

In this chapter, a thorough analysis of many prediction models for temporal real-time system

verification is conducted employing specific performance metrics. The performance measures

defined are prediction performance, isolated timing performance, evolution performance, inte-

grated timing performance, and test data quality. It is necessary to train each of the previously

described target prediction models using a cycle-accurate hardware simulator. A sufficient

amount of input-output data is needed for a model’s training, and they may be produced by

running the simulator with a randomly chosen set of input data. The prediction model may be

utilized to calculate the fitness function during the GA-evolution process once trained using a

simulator. Predicting the fitness function during the GA-evolution process eliminates the need

for actual execution of the application program, either on a simulator or hardware.

The proposed methodology is evaluated by using different case studies. The results of these

experiments show that the proposed method can generate and predict worst-case data nearer

to the WCET. The use of a prediction model also provided a comprehensive speedup. In this

chapter, we have used the Pygad framework [43], an open-source Python library, for building

the genetic algorithm and optimizing machine learning algorithms. It allows different types of

problems to be optimized using the genetic algorithm by customizing the fitness function. To

our best knowledge, nobody has proposed the idea of determining the Worst-case data using

different machine learning models in the place of the simulator or the hardware to reduce the

resource consumption during fitness evaluation.

Contributions: The contributions of the proposed approach are:

• We propose a novel approach to determine Worst-case data using ML based timing model.

• Our approach eliminates the time-complexity reduction of state-of-the-art GA-based tem-

poral testing techniques using ML model, hence saving the execution time during GA-

evolution.

• A selection of best prediction model based on R2 learning score obtained after experiments.

• We evaluate our approach with several different benchmarks using various metrics such as

prediction performance, isolated timing performance, evolution performance, integrated

timing performance, and test data quality.
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5.2 Related Work

This section overviews the state-of-the-art methods and techniques used in temporal verification

of the Real-Time Systems. In this, we describe the work done on the analysis of WCET and

summarizes the use of evolutionary techniques.

Buzdalov et al. [29] presented an approach for the generation of test data for the Knapsack

Problem. The approach is based on the genetic algorithm. It is evaluated on five different

algorithms, including one simple branch-and-bound algorithm and two algorithms by David

Pisinger and their implementations. The experimental results showed that the genetic algorithm

produces better test data than random test generations.

Many researchers have taken avenues to use GA to find the worst-case data for Real-Time

and Embedded systems. Wegener et al. [142] proposed a method to generate worst-case data

using the GA. The goal is to introduce an improved classification-tree method for functional

testing embedded systems. This method should be used in combination with other tests to

ensure that the embedded system is thoroughly tested. A new approach was developed to

complement the classification-tree method, which focuses on the temporal system behavior. It

involves using genetic algorithms to find cases where the execution times are long, and the

timing constraints are tight.

Pohlheim et al. [115] proposed a new approach for testing temporal behavior. It aims to

study the effectiveness of evolutionary algorithms for testing the temporal behavior of embedded

systems. It is based on the idea that the algorithms can be used to establish the minimum

and maximum execution time. In order to determine if input scenarios result in a temporal

mistake, the tester’s job is to identify which ones have the longest or shortest execution timings.

Finding such inputs by human temporal behavior analysis and testing complicated systems is

nearly difficult. Nonetheless, the inputs with the longest execution durations can be found via

evolutionary computation if searching for such inputs is considered an optimization issue.

A Measurement-Based Timing Analysis (MBTA) to establish the WCET is only useful

if we can reasonably be assured that we have input the worst-case execution trace into the

study. Because of this, the quality of these traces is crucial for certification. The goal of this

study [89] is to explore the use of search techniques to produce test cases automatically and

consistently, hence providing the necessary execution traces to support MBTA. The work done

in this study aims to generate “good data” by creating many fitness functions using a typical

search technique. Next, a commercial measurement-based WCET analysis tool is used to enter

the data. This paper ultimately presents a new fitness function to support a standard search

algorithm; the algorithm focuses on achieving full branch coverage and maximizing loop counts.
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One of the most essential steps in the software development process is software testing.

For the past ten years, search-based methodologies have been widely applied in the software

testing domain. Researchers have focused mostly on metaheuristic search approaches, such

as genetic algorithms, out of all search-based strategies. Given the substantial amount of

research that has been done and is being conducted in this area, we believe it is past due for

an investigation of the performance of genetic algorithm-based testing methods. Based on a

literature analysis [133], we provide a road map for the future of software testing using genetic

algorithms. Our evaluation primarily focused on efforts that generate software test data using

genetic algorithms. The purpose of this impartial assessment is to draw future researchers’

attention to the shortcomings of testing based on genetic algorithms, as well as potential fixes

and the degree to which they may be made. The insights from the chosen main studies draw

attention to the problems that arise when software testing uses evolutionary algorithms. The

review’s observations show that the type of genetic algorithm employed, fitness function design,

population initiation, and parameter settings all have an effect on the caliber of solutions found

when employing genetic algorithms for software testing.

The fitness function is determined using an experiment or a computational simulation in

the abovementioned studies. Nevertheless, fitness evaluations could become non-trivial when

the computer simulation required for every fitness assessment is too time-consuming, or the

experiments required to determine fitness functions are excessively expensive. In order to

prune the state space of measurement-based analysis and anticipate a set of test data where the

execution time is close to the worst case, it offers the impetus for prediction-assisted (machine

learning models) evolutionary computation.

The aforementioned limitations of current GA-based temporal testing methods create the

framework for prediction model integration. In a GA-based solution, predicting the worst-case

input data is the goal of model integration. By using a prediction model, fewer simulation runs

are needed, which cuts down on the total amount of time needed for testing. By approximating

the fitness function or functions for at least two decades, prediction models are employed in

the literature to make the optimization of costly computer simulations easier [54]. The use

of prediction models to assist GAs in various industries to solve diverse nature of problems is

getting popular. For instance, Koopialipoor et al. [74] used a hybrid neuro-genetic (GA-ANN)

prediction model to simulate over breaking caused by drilling and blasting operations in tunnel

construction. Moayedi et al. [102] anticipate the eventual bearing capacity of shallow footing

on soil using a variety of evolutionary and neural network models, including a genetic algorithm

optimized with ANN (GA-ANN). Air blast prediction is carried out by Armaghani et al. [68]

using a hybrid genetic algorithm and ANN model. Similar to this, Rodriguez-Roman’s [123]
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work improves travel times and highway safety by utilizing genetic algorithms aided by surrogate

models in project designs. Promising outcomes have been observed when prediction models are

used to support GAs in a variety of contexts.

In this chapter, we present an integrated approach of genetic algorithms and machine learn-

ing models to determine the worst-case data. The fitness function can be computed using a

computational simulation or a simple experiment. Generally, fitness evaluations are non-trivial

when the simulation is time-consuming, and the experiments are expensive. It motivates the

researchers to use machine learning models with GA to determine the worst-case data from a

large search space.

5.3 Methodology

The proposed method is shown in Figure 5.1. It intertwines a Genetic Algorithm (GA) and a

machine learning model to optimize an application’s performance by targeting the identification

of the optimal solution, particularly in scenarios involving worst-case data. The GA, a heuristic

algorithm inspired by natural selection, commences with the initialization of random data and

fitness values, establishing an initial population of potential solutions. Crucially, this process

incorporates a fitness function that evaluates the end-to-end execution time of the application,

aiming to minimize this metric. Through iterative generations, the GA employs selection,

crossover, and mutation mechanisms to evolve and refine these solutions, constantly aiming for

improvements in execution time.

Parallelly, a machine learning model is trained using initial training data, enabling the

model to discern intricate patterns and relationships within the data. Once trained, this model

operates in conjunction with the GA. As the GA generates potential solutions, the machine

learning model comes into play by predicting fitness values (execution times) for these solutions

without the need to execute the application. These predicted fitness values serve as a guide for

the GA, aiding in selecting and prioritizing solutions likely to yield better performance.

The synergy between the GA’s evolutionary exploration and the predictive capabilities of

the machine learning model results in an optimized approach for handling worst-case scenarios.

While the GA navigates the solution space, continuously evolving and selecting solutions based

on their evaluated fitness, the machine learning model contributes by estimating fitness values,

streamlining the GA’s search for the most efficient solution regarding application execution

time. This combined approach harnesses the strengths of evolutionary search and predictive

modeling, aiming to enhance the application’s performance by identifying and refining solutions

tailored to worst-case data scenarios.
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Figure 5.1: Methodology

5.3.1 Genetic Algorithm

Various optimization techniques designed for continuous or differentiable functions often strug-

gle when faced with complex scenarios involving multi-modal and noisy functions. To overcome

these challenges, research focuses on devising more robust methodologies capable of handling

such intricate problems. In this pursuit, biological and physical principles have emerged as

valuable paradigms for optimization. Notably, Genetic Algorithms (GAs) draw inspiration

from Darwin’s theory of natural selection, emphasizing the survival of the fittest in search

procedures.

The fundamental structure of a GA, illustrated in Figure 5.2, embodies a sequential process

aimed at evolving a population towards an optimal solution. It creates a random set of indi-

viduals, forming the initial population. Subsequently, each individual’s fitness—its adequacy

or suitability concerning the problem—is assessed. The algorithm proceeds to the next phase

if the termination criteria are unmet.

Central to the GA’s functionality is selecting parents from the initial population. Parents’

choice heavily relies on their fitness values, favoring those deemed more fit for reproduction.

Once the parents are identified, genetic operators such as crossover and mutation come into

play, facilitating the creation of new offspring that inherit characteristics from their parents.

These newly formed offspring then undergo an evaluation of their fitness. The evolutionary

cycle continues across generations, perpetuating the process of selection, reproduction, and

evaluation. Each successive iteration refines the population, fostering the emergence of po-
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Figure 5.2: Structure of Genetic Algorithm

tentially superior solutions. This cyclical evolution persists until the predetermined stopping

criteria are met, signaling the end of the algorithm.

By mimicking evolutionary principles, GAs traverse the solution space, iteratively improving

the population’s fitness and diversity. This iterative optimization, driven by selection pressure

and genetic variation, enables GAs to explore and exploit the solution landscape efficiently.

Ultimately, GAs offer a versatile approach to tackling complex optimization problems, par-

ticularly those characterized by multi-modalities and noisy functions, by iteratively evolving

towards better solutions in a manner inspired by natural selection.

5.3.2 Machine Learning Model

The machine learning model is used to determine the fitness value of an individual solution in

any generation of GA. It is first trained and then used with the GA, as shown in Figure 5.3.

Consequently, the use of a machine learning model eliminates the need for a simulator or actual

hardware for the fitness evaluation. In this work, we have targeted different machine learning

models such as Linear Regression, Polynomial Regression (2nd Degree), Support Vector Regres-

sion (Linear kernel and RBF kernel), Tree Regression, Forest Regression, K-Nearest Neighbors

Regression and Ridge Regression. The process begins with the random input provided to both

the gem5 Simulator and the machine learning model to train our model. This process is re-

peated until the error is bounded according to certain stopping criteria. The machine learning

model is considered to be trained once the stopping criteria are satisfied. This model is then

used to predict the execution time for the given inputs and is integrated into the proposed test

data generation methodology.
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Figure 5.3: Training of Model

5.4 Experimental Setup

This section elaborates the experimental setup for the evaluation of prediction models. It

first describes the particular settings for target architecture and framework in subsection 5.4.1.

The benchmark used for evaluation is described in subsection 5.4.2. The parameters for GA-

evolution and model training are presented in subsection 5.4.3 and 5.4.4, respectively.

5.4.1 Target Architecture and Framework

The ARM v7-A instruction set architecture-based micro-architectural model is used as the tar-

get platform, available in the Gem5 simulator. The selected architecture model is a single-core

processor clocked at a frequency of 2 GHz with 512 MB of physical memory. Furthermore, the

memory model used is simple classic memory, and the simulator mode used is called emulation

mode. All this experimentation, including the running of the simulator, was performed on a

Macbook Air with a 1.8 GHz Dual-Core Intel Core i5 processor and 8 GB of physical mem-

ory. The prediction models employed in this work are realized in the Pygad framework. It is

a versatile and accessible Python library designed to efficiently implement genetic algorithms

(GAs) for optimization and machine learning tasks. This framework simplifies the integration

of GAs into Python-based projects, offering a range of functionalities to facilitate optimization

processes. It provides a straightforward and flexible API, allowing users to easily create and

customize GA-based solutions. With its modular structure, PyGAD supports customizing ge-

netic operators such as crossover and mutation, enabling tailored solutions for various problem

domains.

5.4.2 Benchmarks

We chose two benchmarks from the Mälardarlen WCET suite to examine various prediction

models. Insertion sort and Bubble sort are these two benchmarks. These benchmarks were

chosen because, as a result of the input data, they can most accurately depict the variation in
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their execution times. Fixed-sized unsorted arrays of random numbers between 0 and 1000 are

the inputs used in this study’s benchmarks (sorting techniques). These benchmarks’ algorithms

sort the arrays. The method determines how many swaps are needed to sort the list. On the

other hand, the beginning order of the list to be sorted also determines the number of swaps

needed. A benchmark’s execution time, a function of the number of swaps, highly depends on

the input data. O(n2) swaps, where n is the length of the supplied list of numbers, represent

the worst-case performance for these sorting methods. A reverse-sorted array of integers serves

as the benchmarks’ worst-case input.

5.4.3 GA-evolution parameters

The Genetic Algorithm (GA) performance heavily relies on consistent and well-defined param-

eters governing its operations. In this context, the parameters utilized in the GA framework

are meticulously chosen and maintained constant across experiments. The GA begins with

unsorted, fixed-sized arrays of randomly generated integers within a specified range, forming

the initial population of potential solutions. Throughout the GA iterations, the population

remains steady at 50 individuals per generation, ensuring a stable solution for space explo-

ration. Table 5.1 outlines the fixed GA parameters employed consistently in the experiments.

Notably, the convergence of a GA toward the desired outcome is profoundly influenced by the

probabilities governing crossover and mutation operations. Crossover, responsible for generat-

ing new offspring from parent solutions, is regulated by a probability typically between 0.6 and

1.0. A higher crossover probability encourages exploration and diversifying solutions, while a

lower value may lead to premature convergence, limiting the algorithm’s effectiveness. Similar

to adding variation or exploration, mutation operates with a relatively smaller probability than

crossover. Its role is to introduce novelty and explore uncharted areas in the solution space.

Mutation probability generally ranges between 0.005 and 0.05 to prevent excessive random-

ness that could derail the GA from a structured search. Determining optimal GA parameters

follows a methodology inspired by Pongcharoen et al. [116]. This approach evaluates parame-

ters based on balancing minimum total cost and minimum spread. It systematically explores

various combinations of parameters like population size, number of generations, crossover, and

mutation probabilities. The aim is to pinpoint parameter values that balance exploration and

exploitation, ensuring an effective search while preventing premature convergence or excessive

randomness. This systematic evaluation enables the selection of GA parameters that foster effi-

cient exploration of the solution space, aligning with the objectives of the optimization problem

at hand.
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Table 5.1: GA parameters used in different Generation Evolution

GA Parameters Methods/Values
Population size 200
Parent selection Roulette wheel selection
Crossover Arithmetic crossover
Crossover Probability 0.6
Mutation Single point Random Mutation
Mutation Probability 0.05
Population selection Elitism, 2 best individuals
Maximum number of generations 1000

5.4.4 Parameters for model training

The R2 score, also known as the coefficient of determination, is a statistical measure used to

assess the goodness of fit of a regression model to the observed data. It quantifies the proportion

of the variance in the dependent variable (the variable being predicted) that is explained by

the independent variables (the predictors) in the regression model. R2 score ranges between 0

and 1, where:

• An R2 score of 1 indicates that the regression model perfectly predicts the dependent

variable based on the independent variables.

• An R2 score of 0 suggests that the model fails to explain any variability in the dependent

variable beyond the mean of the dependent variable.

• Values between 0 and 1 denote the proportion of the variance in the dependent variable

that the model explains.

Mathematically, the R2 score is calculated as the ratio of the explained variance to the total

variance of the dependent variable. It is computed as one minus the ratio of the sum of squared

errors of the model to the total sum of squares.

R2 score is a useful metric in evaluating the performance of regression models; however,

it does have limitations, especially when dealing with complex data or overfitting. Therefore,

it is often recommended to complement the R2 score with other evaluation metrics to gain a

comprehensive understanding of a model’s predictive performance

5.5 Evaluation

This section presents the experimental results with the target prediction models and the selected

benchmarks, such as Bubble and Insertion Sort on various performance measures, described in
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subsection 5.5.1 and 5.5.2, respectively.

5.5.1 Bubble Sort Experiments

The provided scatter plot in Figure 5.4 showcases the correlation between the predicted end-

to-end execution times by various machine learning models and the actual execution times

obtained from the gem5 simulator. Each point on the plot represents a data point from the

3000 randomly generated lists, where the x-axis denotes the true execution time obtained from

gem5, and the y-axis depicts the predicted execution time by the trained machine learning

models. The closeness of points to the diagonal line signifies the accuracy of the predictions.

Ideally, points lying close to this line indicate that the predicted values align closely with

the actual execution times, illustrating a strong predictive capability of the machine learning

models. The R2 values associated with different models, displayed within the figure, quantify

the goodness of fit of these models to the data. A higher R2 score (closer to 1) indicates a better

fit, signifying that the models explain a larger proportion of the variance in the execution times.

Overall, the scatter plot and R2 values indicate the accuracy and performance of the machine

learning models before their integration into the Genetic Algorithm (GA) evolution process,

validating their predictive capabilities for assessing the fitness of individuals within the GA

population.

In Table 5.2, the percentage deviation of predicted worst data generated by each machine

learning model is highlighted. This deviation comparison reflects the difference between the

predicted execution times generated by these models and the actual execution times obtained

from the gem5 simulator for the test data—referred to as the final population in the GA

evolution. Notably, this test data holds a distinct characteristic: its execution times closely

align with the maximum possible execution time. The computation of percentage deviation

provides insight into how accurately these machine learning models predict the extreme or worst-

case scenarios represented by this test data. A smaller percentage deviation signifies a closer

alignment between the predicted execution times by the models and the actual execution times

measured by the gem5 simulator for this critical test dataset. This analysis offers an evaluation

of the model’s performance under extreme conditions, shedding light on their ability to predict

execution times accurately in scenarios where the application faces maximum workload, thereby

assessing the robustness and reliability of these models in handling worst-case scenarios.

Table 5.3 shows the comparison between the execution time measured during the simulation

and through the prediction. The first column represents the benchmark name. The second

column represents the simulation time for the execution of single input of this benchmark. The

third column presents the time taken by the best machine learning model to predict execution
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Figure 5.4: A scatter plot of measured vs predicted execution times for bubble sort using
different prediction models
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Table 5.2: Percentage deviation between the execution time of each data point and the maxi-
mum possible execution time for bubble sort

Models Percentage Deviation from maxi-
mum execution time

Linear Regression 7.26
Polynomial Regression (2nd Degree) 8.19
Support Vector Regression (Linear kernel) 7.39
Support Vector Regression (RBF kernel) 11.22
Tree Regression 13.73
Forest Regression 12.28
K-Nearest Neighbors Regression 13.07
Ridge Regression 7.26

Table 5.3: Speedup ratio for bubble sort

Benchmark Simulation
Time(millisec)

Prediction
Time(millisec)

Speedup

Bubble Sort 138 5.60 24.64

time values for this benchmark. Finally, the last column represents the speedup gain.

5.5.2 Insertion Sort Experiments

The input data is generated randomly. It consists of lists of 16 elements. Each data list is

considered as a separate input. The type of elements in each input data list is an integer

and varies between 0 to 1000. The benchmark is executed using the gem5 simulator, and the

execution time is obtained against each of the 3000 input lists.

The scatter plot in Figure 5.5 shows that the execution time is accurate. Almost all the

data points are near the straight line. In each figure, the x-axis represents the actual execution

time obtained from the simulator against a given input, whereas the y-axis shows the execution

time predicted by the model against the same input. The R2 values represent how well the

model fits the input data. The higher the R2 values, the better the model learns about the

data. After training the machine learning model, it is ready to be used to predict the execution

times in the genetic algorithm evolution.

The test data collected during the evolution of GA is now considered to be the final popu-

lation. The salient feature of this test data is that its execution time is near to the maximum

possible execution time. The execution time of the test data is computed by using the gem5
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Figure 5.5: A scatter plot of measured vs predicted execution times for insertion sort using
different prediction models
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Table 5.4: Percentage deviation between the execution time of each data point and the maxi-
mum possible execution time for insertion sort

Models Percentage Deviation from maxi-
mum execution time

Linear Regression 14.12
Polynomial Regression (2nd Degree) 13.24
Support Vector Regression (Linear kernel) 14.34
Support Vector Regression (RBF kernel) 19.42
Tree Regression 25.38
Forest Regression 23.39
K-Nearest Neighbors Regression 26.04
Ridge Regression 14.12

Table 5.5: Speedup ratio for insertion sort

Benchmark Simulation
Time(millisec)

Prediction
Time(millisec)

Speedup

Insertion Sort 140 5.12 27.34

simulator. This measures the percentage deviation of predicted worst data generated by each

model, as shown in Table 5.4.

Table 5.5 shows the comparison between the execution time measured during the simulation

and through the prediction. The first column represents the benchmark name. The second

column represents the simulation time for the execution of single input of this benchmark. The

third column presents the time taken by the best machine learning model to predict execution

time values for this benchmark. Finally, the last column represents the speedup gain.

5.6 Summary

In this chapter, we introduce a methodology employing Genetic Algorithms (GAs) in conjunc-

tion with diverse machine learning models to identify worst-case data scenarios in applications.

By utilizing various machine learning models facilitated by the Pygad Framework, substantial

time reductions were achieved. The models underwent training utilizing the gem5 simulator,

after which they were integrated into the GA evolution process to predict application execution

times. The outcomes exhibited promising enhancements in speed, demonstrating the efficacy

of this integrated approach. The ability to generate test data closely resembling worst-case

scenarios significantly expedites temporal verification processes for real-time and embedded
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systems. The proposed methodology underwent comprehensive scrutiny, particularly focusing

on frequently employed sorting algorithms, showcasing its versatility and potential applicabil-

ity across various computational scenarios. This amalgamation of GA, machine learning, and

simulation techniques offers a promising pathway towards expedited temporal analysis and op-

timization in critical system verification and benchmarking processes. The suggested method

is universal even if the testing in this work is restricted to the sorting tasks. Examining the

effects of various hardware platforms and prediction models on the effectiveness of the suggested

technique may be a further avenue for future study.
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Chapter 6

Early WCET Estimation using ML and

DNN

The Worst-Case Execution Time (WCET) is crucial and an essential factor in analyz-

ing and developing Real-Time Embedded Systems. The idea of the WCET allows the

designer to create safe and reliable real-time systems. The WCET is used by the sched-

uler to determine an appropriate scheduling scheme for the application and to guarantee

timing constraints. These systems need to satisfy a strict deadline, and failing leads to

catastrophic events such as loss of life. Generally, WCET analysis is applied only in the

late stages of Safety-Critical Systems development when the hardware is available, and

code is compiled and linked. Different methods exist to determine WCET, but none of

these provide early insight into WCET. Suppose early WCET is unavailable during sys-

tem development. In that case, many systems design decisions are made using experience,

which might be impractical if systems don’t satisfy timing constraints, and it may re-

sult in costly system re-design. However, we need early WCET in the initial stages of

systems development as an essential prerequisite to configure the system properly. We

propose a method to determine early WCET using Machine Learning and Deep Neural

Networks models without the need for the hardware and binaries, i.e., source-level timing

analysis—this new approach estimate WCET using source code. The models can predict

WCET without running the code on the platform once it is trained, which is created using

the Pytorch framework. The viability of the proposed method is demonstrated with the

TACLeBench benchmark suite. The results show reasonable estimates on the predicted

execution time of the final and compiled code, proving the prospect of the methodology.

In the rest of this chapter, the introduction and motivational examples are presented in

Section 6.1. Section 6.2 describes the related work in estimating early WCET with and

without ML approaches. The early WCET estimation using ML is presented in section
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6.3. Experimental setup and ML results are described in Sections 6.4 and 6.5, respectively.

The early WCET estimation using DNNs is presented in Section 6.6. Section 6.7 describes

the DNN approach in detail, while our experimental setup and results are described in

Section 6.8. and 6.9, respectively. Finally, we conclude the chapter in Section 6.10.

6.1 Introduction

In safety-critical systems, the timing domain is as important as the value domain. These systems

need to satisfy the timing constraint; otherwise, resource damage or even life loss could occur.

For instance, it is essential to know that airbags in cars open fast enough to save lives. Besides,

these systems not only satisfy the correctness of the system but also be responsive. If the

system does not satisfy the timing constraints after manufacture, then changing the hardware

that cannot schedule tasks would be more expensive to redesign. Therefore, estimating the

worst-case execution time is very crucial. Estimating WCET [145] for the given architecture is

difficult, if not impossible, to cover all the system states, and it requires the user’s input. Modern

processors are equipped with complex architectural features such as superscalar pipelines and

caches that make WCET estimation complex. For instance, caches introduce the variance in

operations execution time based on the hit or miss in the caches. In the previous decade, many

optimizations have been done to improve the average-case execution time, but less work has

been done to estimate WCET precisely and accurately. The process of estimating the WCET

is called timing analysis. The timing analysis of the given system is possible in the last stage

of the system development process. Hardware platform and compiled binary code are required

to estimate the WCET. By getting the early estimate of WCET, we will prune the system’s

unwanted design points based on the parameter of interest, i.e., design system exploration.

In the last decade, Real-Time Embedded Systems have covered all aspects of our lives.

We are surrounded by it, and the possible applications with these systems are endless such

as avionics, automotive, nuclear power plant, robotics, e-health, etc. Unlike general-purpose

computer systems, critical systems and cyber-physical systems need to satisfy timing constraints

and the functionalities correctness [145]. For instance, the airbag in the car must open on time

if any unwanted condition happens; otherwise, it would lead to the loss of life or significant

damages. The other different application is a nuclear power plant in which gas emission should

be reported to the station as soon as possible; otherwise, a considerable loss may happen.

Needless to say that all these systems are ubiquitous. It is crucial to choose the correct hardware

configuration such as caches, pipelines, branch prediction, etc., in the high-volume market of

Real-Time Embedded Systems to reduce the development costs. It will reduce the risk of the

final systems not meeting the timing constraints.If the timing constraints of the systems don’t
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meet, then costly re-design of the system is required.

Traditionally timing estimation is done in the late stage of the systems development when

the hardware is available, and the compiled code is linked. All the WCET available tools such

as aiT [39], Heptane [57], and OTAWA [13] can estimate WCET with the binary codes for

the selected hardware configuration. However, none of these tools give an early estimation

of WCET. Therefore, a method to find early WCET would be very useful in developing the

systems as it will reduce the design space exploration.

In this chapter, we propose a method for source-level timing analysis for the given hardware

configuration and compiler. We show how the machine learning model is used to estimate

WCET. Our approach doesn’t need binary to be analyzed. The method has the following

properties:

• It is beneficial for both soft and hard real-time systems for the early development phase.

• It is based on the set of virtual instructions which define the abstract of the selected

hardware and compiler.

• The timing model is linear and consists of fixed costs for the virtual instructions.

Various prediction models can be used to estimate WCET. In this chapter, we present a

framework in which an appropriate prediction model can be used to predict the execution time

of a problem at hand. The selection of a proper model depends on the complexity and type of

the application problem. The initial results for ANN as a prediction model in an early WCET

estimation methodology are presented in [80]. However, a detailed study of prediction models

to estimate WCET for temporal verification of real-time systems has not been performed yet.

Moreover, the use of prediction models in timing analysis is a novel idea and thus requires a

detailed evaluation of prediction models.

This article performs a detailed study of various prediction models for early WCET esti-

mation of real-time systems using machine learning approaches. All the above-stated target

prediction models are required to be trained through a cycle-accurate simulator of the hard-

ware. The training of a model requires some adequate input-output data, which are obtained by

running the simulator with the randomly selected set of input data. Once the prediction model

is trained through a simulator, it can be used for the estimation of the unseen application.

The empirical nature of timing models underestimates execution times, so our timing es-

timation is not always safe. A safe timing estimate is always required in the final verification

phase. However, this value in the early design of the system is very useful in dimensioning the

correct Real-Time Systems.
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6.2 Related Work

Bonenfant et al. [22] presented an approach for early WCET prediction using machine learning

based on C source code. Their method used a Static approach which generated worst-case event

counts such as the number of arithmetic operations like addition, subtraction, multiplication,

and division, the number of function calls, the number of global variables, and the number of

reads and writes access. To train the model, they used these features with labeled WCET.

The worst-case events count of source code was formulated to obtain a satisfiable prediction

of the future WCET. As far as considering estimating early WCET, this approach works well.

However, it has some shortcomings in that event-counting of code using CFG results in the loss

of valuable code flow information.

Thomas Huybrechts et al. [66] proposed a new extension to the hybrid approach to predict

early WCET using machine learning. This new approach estimates the WCET on smaller enti-

ties of the code, so-called hybrid blocks, based on software and hardware features. As a result,

the ML-based hybrid analysis provides insight into the WCET early on in the development

process and refines its estimate when more detailed features are available. A new tool named

COBRA was proposed to extract the features. The extracted features were used to train and

validate the model. Machine learning approaches, such as Linear regression, Tree regression,

and Support vector machines, were used to compare the results of TACLeBench [38] appli-

cations. The mean relative error for support vector regression with Linear kernel was 40.2%,

which was too high to use as an upper bound on WCET.

Oyamada et al. [108] presented a neural network-based approach for accurate software

performance estimation, which also deals with the non-linear behavior of execution times due

to complex modern architecture such as deep pipeline, branch prediction, and cache sizes.

Assembly instructions were used as features categorized as floating-point, integers, branches,

and load/store operations. Based on the Control Flow Graph (CFG), the trained data is

classified into two parts as control dominated applications and data dominated applications.

Feed-Forward neural networks have been used with one input layer, one hidden layer, and

one output layer with different neurons at each layer. CFG weights were used to make the

distinction of application domains. The generic estimator had a maximum overestimation of

41.01% and a maximum underestimation of 20.69%. However, for the specialized estimator,

they improved the overestimation and underestimation slightly. The error was too high for the

estimate to be used as upper bound but obtaining such results in the development process is

useful for system design.

The approach proposed in [67] extended the work done in [66] with a deep neural network
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to estimate WCET. This work used two different models: a feed-forward neural network and

a tree recursive neural network. The data they used in their experiments were taken from

TACLeBench benchmark suits. The architecture they used for dataset A was one input layer

of ten neurons, three hidden layers, 32 neurons, and one output layer. The results were given in

terms of Root Mean Square Error (RMSE), and for dataset A, it was around 40% on validation.

The results are too large to obtain any useful upper bound.

Lisper and Santos [96] developed a new Measurement-based WCET analysis method, which

uses regression to identify parameters in the common linear Implicit Path Enumeration Tech-

nique (IPET) model to calculate WCET. The method can use different granularity timing

measurements, including end-to-end measurements, which reduces the need for fine-grained

timing measurement instrumentation. Abel and Reineke [3] developed an algorithm to model

the cache’s replacement policy by measuring actual hardware automatically. This work helps

identify the cache-sensitive timing model.

In this chapter, we present a ML and DL based approach to predict early WCET with a

network architecture different from the aforementioned approaches. Our models are evaluated

on TACLeBench [38] benchmark suites. We use the SWEET [95] tool to extract the features.

The primary function of SWEET is to perform flow analysis to identify flow facts i.e., informa-

tion about loop bounds and infeasible paths in the program and explained in detail in chapter

2. Flow facts are necessary for finding safe and tight WCET. Any WCET analysis must satisfy

safeness and tightness conditions, which reflects the estimate of WCET precisely.

6.3 Early WCET Estimation Using ML

Our method operates in two phases. In the first phase, described in section 6.3.1, different pre-

diction models are trained using the selected training programs. In the second phase, presented

in section 6.3.2, the WCET of different benchmarks is estimated using our methods. These two

phases are presented in a target-independent manner.

6.3.1 Training Phase

The training phase within the depicted process (as shown in Figure 6.1) involves crucial

steps to understand and learn the timing behavior of the processor, targeting a specific hard-

ware/compiler configuration. Initially, training programs are meticulously designed and chosen,

ensuring compatibility with the target hardware or a simulator environment. These programs

are then executed on the designated platform, recording the required cycles. This recorded

cycle count serves as valuable timing information that reflects the actual execution behavior

on the hardware or simulator. Simultaneously, the same training programs undergo translation
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Figure 6.1: ML Model Training Phase

into an intermediate format known as ALF, generating virtual instructions that represent the

program’s functionality in an abstract manner. These virtual instructions are then analyzed

using the SWEET tool, which specializes in conducting flow analysis. SWEET’s [95] primary

function involves extracting critical flow facts from the programs, such as information about

infeasible paths and loop bounds. This flow analysis helps comprehend the intricate program

structures, identifying critical program features impacting execution time. The collected data,

comprising cycle counts from hardware execution and flow facts derived from virtual instruc-

tions via SWEET, serve as input for training the machine learning model. Feeding this data

to the model, it learns to discern patterns and relationships between the recorded cycle counts

and the extracted flow facts. The model iterates through various algorithms or configurations,

optimizing its parameters to identify the best-fit model that accurately predicts execution times

based on the learned timing behavior. This holistic approach integrates real-time hardware exe-

cution data, abstracted virtual instructions, and critical flow facts to train the machine learning

model. The aim is to discern and capture the nuanced timing behaviors of the processor, en-

abling the selection of the most effective model for predicting WCET based on the interplay

between program structures and hardware execution characteristics.

6.3.2 Testing Phase

The WCET estimation for the benchmark programs is shown in Figure 6.2. Initially, specific

benchmark programs are meticulously chosen based on predetermined criteria. Subsequently,

these selected programs transform virtual instructions utilizing ALF. ALF enables the con-

version of the programs into a format compatible with the subsequent prediction model. The

prediction model, which has been previously trained or developed using machine learning tech-

niques, plays a pivotal role in this estimation process. Leveraging the features and character-

istics extracted from the transformed virtual instructions, the prediction model computes an

estimation of the WCET for each program. This estimation leverages patterns, relationships,

and learned behaviors from the training data to predict the potential maximum execution time
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Figure 6.2: WCET Estimation Phase

of these benchmark programs.

6.4 Experimental Setup

In this section, we detailed the experimental setup used to evaluate our approach for the

Raspberry Pi 4 [121] platform. The hardware and software environments are first introduced.

The TACLebench benchmark suite is presented. We then detail the learning and prediction

phase of our approach.

The Raspberry pi B 4 relies on a Broadcom BCM2711 SoC, which is based on a 1.5 GHz

64-bit quad-core ARM Cortex-A72 processor, a 2-wide super scalar processor. The architecture

features a private L1 cache and a 1 MB shared L2 cache. The Raspberry Pi runs the Raspbian

Lite operating system (Linux kernel version 4.19, a light operating system without a user

interface to minimize the impact of the operating-system activity on timing). The timing noise

coming from the operating system can be avoided by running the codes as Linux kernel modules.

The compiled codes are executed on a specific core (core 3) on which no user task is allowed to

run (isolated core, using the Linux isolcpus facility). The quality of our approach was evaluated

on benchmarks from the TACLeBench [38] benchmark suite. The benchmark having floating

point values are not supported by our approach because execution in kernel mode does not

support this. We also discarded benchmarks having recursion and complex call due to the

same reason.

A total of 242 programs were used for the training of the prediction models. We have made

sure that the construction and selection of the training program cover all the instructions for

the ARM Cortex-A72 processors. The training programs are constructed using the extended

approach presented in [2], which covers all the context-dependent timing effects due to hardware

features such as caches, pipelines, and branch prediction units, and code optimizations due to

the compiler. The training programs are executed on the ARM cortex processor to measure

the execution time, which is used as labels. The same training programs are translated into

virtual instructions using SWEET, and features are extracted. The prediction model quality

depends on the input training data, which needs to be biased-free as much as possible. The

features extracted using SWEET tools are shown in Table 6.1, such as a number of additions,

subtractions and modulo operations, and so on. The features need to be extracted carefully
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Table 6.1: Features Extracted

Number of Addition
Operations

Number of Subtrac-
tion operations

Number of Multipli-
cation Operations

Number of Division
Operations

Number of Logic
Operations

Number of Shift
Operations

Number of Function
calls

Number of Return
Statements

Number of Jump
statements

Number of Load
Operations

Number of Store
Operations

Number of Compar-
isons

Table 6.2: Experimented Machine Learning Algorithm

Algorithm Description
Random Forest A multitude of decision trees
Tree Tree regression
SVM (Linear Kernel) Support Vector regression (Linear Kernel
SVM (RBF Kernel) Support Vector regression (RBF Kernel)
K-Nearest Neighbors K-Nearest Neighbors regression
Bayesian Ridge Bayesian ridge regression

as it leads to the bias in the system. We also normalized our data values in the range of 0 to

1 to avoid the prediction model’s inclination towards the features having larger values. There

are many frameworks available nowadays to use for Machine learning, such as Pytorch and

Tensorflow. In our experiences, We have used a Pytorch framework. The actual training and

validation are performed through a 4-fold cross-validation process.

WCET estimation is evaluated on the machine learning algorithm provided by the Scikit

library [110]. Preparatory experiments made us select the six algorithms that gave the best

result among those provided by the Scikit library, as shown in Table 6.2.

6.5 Experimental Results

Table 6.3 reports the Mean Squared Error (MSE) on the benchmark using the six prediction

models. The lower the value of MSE, the better the prediction model. The results show

that out of all the prediction models, none of them outperforms the other in all benchmarks.

However, the best prediction model in this is Support Vector Regression with Linear Kernel

followed by RBF Kernel. In Figure 6.3, a scatter plot illustrates the predicted WCET values

against the actual execution times of the validation set. Each scattered point corresponds to a

specific benchmark utilized in the experiment, and the points are differentiated by color. The

proximity of a point to the vertical line indicates the magnitude of prediction error, with closer
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Table 6.3: 4-Fold cross-validated Mean-Squared Error of each Regression Model

Regression Model MSE
Forest Regression 0.03873
Tree Regression 0.03883
Support Vector Regression (Linear Kernel) 0.03767
Support Vector Regression (RBF Kernel) 0.03768
K-Nearest Neighbors Regression 0.03969
Bayesian Regression 0.03969

points indicating lower error rates. Upon inspection, it becomes evident that SVR with both

Linear Kernel and RBF Kernel exhibit a noteworthy accuracy in their predictions. The tight

clustering of points around the vertical line, particularly in the vicinity of the SVR predictions,

underscores the efficacy of these models in accurately estimating WCET values. This graph-

ical representation not only offers a visual depiction of the predictive performance of various

regression models but also emphasizes the superior accuracy achieved by SVR with Linear and

RBF Kernels, thereby highlighting their potential suitability for WCET prediction tasks. This

is because of the simple architecture in our experiments with fewer features such as a single

core and no cache. Compiler optimizations were disabled when compiling the program to ease

the flow of information during WCET analysis.

6.6 Early WCET Estimation Using DNN

Deep Neural Networks [90] are gaining popularity in every field of science due to their ability

to solve complicated applications with increasing accuracy over time. They are a subset of

Artificial intelligence that attempt to learn patterns based on input data. It is the machine

learning techniques that provide computers with the ability to learn from observed data. Super-

vised learning and Unsupervised learning are different types of machine learning. In supervised

learning, the system is given labelled data, whereas in unsupervised learning, the system is

given unlabeled data. Our approach uses supervised learning in which labels are formed out of

the number of cycles consumed for each training program.

The analogy of a neural network has been taken from the neuron present in the human

brain. The whole concept of deep learning is to try and mimic the human brain and get similar

functions as the human brain has and leverage the things that evolution has already developed

for us. Millions of neurons are present in the human brain. Neurons send and process signals in

the form of electrical and chemical signals. Biological neural networks consist of interconnected

neurons with dendrites that receive inputs. Based on these inputs, they produce an output

through an axon to another neuron. The neuron (node) is the building block of any deep neural
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Figure 6.3: A scatter plot of measured vs predicted execution times for different trained pre-
diction models on the validation set.

network. An example of a neuron in fig. 6.4. shows the input (X1 - Xn), their corresponding

weights (W1 - Wn), a bias (b) and the activation function ƒ applied to the weighted sum of the

inputs. The parts/components of a typical deep learning system are described below, and later

we apply the following steps to create the model, train the model, and for the accuracy of the

model.

• Data - The data is what we apply deep learning techniques on. The data gives insights

into how our features and labels are related.

• Task - On the given data, what tasks have to be performed – such as classification and

regression.
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Figure 6.4: A Neuron.

Figure 6.5: A Feed Forward Neural Network.

• Model - Model represents the details of the architecture. Some of the popular models

are Feed-Forward Neural Network, Convolution Neural Network, and Recurrent Neural

Network.

• Loss Function - The loss function is used to evaluate how well the learning algorithm

predicts the outcome. The learning algorithm tries to improve itself by loss functions.

There are different types of loss functions such as mean square error and cross-entropy

loss.

• Learning Algorithm - The learning algorithm is used to update each parameter in our

neural network. Using a learning algorithm, our model learns to identify trends in the

data. Some of the different learning algorithms are gradient descent and Adam [73].

• Accuracy - The predicted value is compared with the actual value to find the accuracy

which tells us how well our network performs.

A feed-forward neural network or Multi-layer Perceptron (MLP) [136] is an essential deep
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learning model. A feed-forward network, is as shown in Figure 6.5. consists of one input layer,

one and more hidden layers, and one output layer. In the feed-forward network, neurons are

not connected to themselves or neurons in the same layer. A fully connected network is a

particular case of a feed-forward network where all neurons of one layer are connected to all

the following layer’s neurons. In the general case, not all the neurons need to be active, and

in some networks, most of them are inactive. Neurons at the hidden layer have two portions –

linear, and non-linear activation functions. For the given inputs and weights of each layer, the

feed-forward network can predict the desired output. This process is known as a forward pass

in deep learning terms. Later, using back propagation, we update our models’ parameters.

6.7 DNN Approach

Traditionally, WCET estimation has relied on static analysis techniques, such as abstract in-

terpretation or model checking, to derive upper bounds on execution times. These methods

often involve manual annotation or instrumentation of code, making them labor-intensive and

prone to inaccuracies, especially in complex software systems. However, recent advancements in

machine learning, particularly in the field of deep learning, have shown promise in automating

WCET estimation with improved accuracy and efficiency. One such approach involves the use

of feed-forward neural networks (FNN) to model the relationship between program character-

istics and execution times. The detailed explanation of the proposed approach is explained

below. Figure 6.6 depicts both the training and testing phases. The detailed explanation of the

proposed approach is explained below. Figure 6.6 depicts both the training and testing phases.

The process begins with the selection of training programs, which represent a diverse range

of tasks and execution patterns that the system is expected to encounter. These programs

are compiled and executed on the target hardware or a simulator, and their execution times

are measured. Next, the training programs are converted into a virtual instruction set, which

abstracts away hardware-specific details and represents program behavior at a higher level.

Using tools like SWEET (Statistical Wcet Estimation Enhancement Tool), the instruction

count for each program is recorded. This step is crucial as it provides input features for training

the neural network model.

The collected data, comprising both instruction counts and corresponding execution times,

serve as the training dataset for the feed-forward neural network. The FNN is trained to learn

the complex mapping between program characteristics (represented by instruction counts) and

their corresponding WCETs.

Unlike previous approaches [7], that often relied on simplistic models such as linear regres-

sion, the FNN offers the advantage of capturing nonlinear relationships and interactions between
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Figure 6.6: Early-timing analysis approach using DNN.

Table 6.4: Extracted Features

# addition operations # division operations # subtraction operations
# logic operations # function calls # return statements
# load operations # store operations # multiplication operations
# shift operations # jump statements # comparison operations

input features. This enables more accurate WCET estimation, particularly for complex software

systems with intricate control flow and data dependencies. Once the FNN is trained, it can be

deployed for timing analysis of new programs or system configurations. Given the instruction

count of a program, the FNN predicts its WCET with high accuracy, allowing developers to

assess timing requirements and identify potential bottlenecks or performance optimizations.

6.8 Experimental Setup

Selection and construction of training programs are of utmost importance. Each training pro-

gram is constructed using the extended approach presented in [7], which covers all the context-

dependent timing effects due to hardware features such as caches, pipelines and branch predic-

tion units, and code optimizations due to the compiler. The training programs are executed

on the gem5 [20] simulator to measure the number of cycles which are used as labels. The

same training programs are translated into a virtual instruction set using SWEET [95] tool.
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Table 6.5: Layers and Properties of our Neural Networks

Dataset A Input Layer 1 Layer 2 Layer 3 Layer 4 Properties
No. Neurons 12 32 32 32 1 Learning rate / Optimizer 0.01 / Adam
Activation f. - Leaky Relu Leaky Relu Leaky Relu Leaky Relu No. epochs / Batch size 100 / 10
Regularisation - L2 (β=0.01) L2 (β=0.01) L2 (β=0.01) L2 (β=0.01) No. Samples (train / test) 57 / 23
Dataset B Input Layer 1 Layer 2 Layer 3 Layer 4 Properties
No. Neurons 12 32 32 32 1 Learning rate / Optimizer 0.03 / Adam
Activation f. - Leaky Relu Leaky Relu Leaky Relu Leaky Relu No. epochs / Batch size 100 / 40
Regularisation - L2 (β=0.01) L2 (β=0.01) L2 (β=0.01) L2 (β=0.01) No. Samples (train / test) 224 / 23

This virtual ISA acts as a feature set of the proposed predictor network. Combining these two

essentially creates the data which can be appropriately used by neural networks.

In deep learning, we need to pre-process and clean the data before feeding it to a neural

network. We have used feature selection on our training data, and we found that the features

shown in Table 6.4 are the most frequently occurring out of all the features. So we need to

choose the features carefully [53]. We found that some features have values in the range of 200

- 800, and some features have values in the range of 2 - 10. These differences in the range of

values bias the model’s prediction to be inclined towards values of features that are larger, and

the features having lower values contribute much less to the prediction, i.e., low value features

have no significance in the Neural Network [55].

To tackle this issue, we need to normalize our data value in the range of 0 to 1. Several

frameworks such as Pytorch [109] and Tensorflow [2] are available and provide a competitive

arsenal of tools to perform this operation. We have used the Pytorch framework in this ex-

periment. ALF format is suitable for our approach because it contains both high-level and

low-level constructs. Statement such as CALL and RETURN represent high-level constructs,

and a statements such as LOAD, STORE, and JUMP represent low-level constructs. Two

datasets, A and B, are created. The total number of elements in the training datasets A and B

are 57 and 224 respectively. 23 TacleBench programs have been used as testing data, and these

programs are the same as those used in [7]. The training data is further divided into two parts:

training, and validation through 5-fold cross-validation to check how well our model performs

on the training data. The testing data is taken from the TacleBench benchmark which contains

a test case for WCET analysis for different platforms. RMSE scores are used to compare our

predicted value to the actual value. RMSE is calculated as the root of the mean of the squared

differences between the predictions and the real values.

Gem5 [20] simulator is used to carry out all experiments to configure one processor with

different attributes. The ARM810 processor is used with 5 stage pipeline, 8KB unified cache,

MMU, and static branch prediction. Operations like floating points are implemented in the
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(a) Dataset A (b) Dataset B

Figure 6.7: Comparison of Loss values using different configuration.

software. LLVM [88] compiler is used for compiling the test programs. Clang is used as a

front-end to convert C source code into LLVM intermediate format. The LLVM IR file is given

to ALF backend (C2ALF) to convert it into an ALF format, and the ARM backend (LLC) to

convert it into an ARM object file. The SWEET tool is used to read the ALF code; it counts

the number of different ALF constructs that appear as statements and operations.

We use hyperparameter tuning [40], such as grid search and randomized search, to find the

best possible neural network configuration by modifying the hyperparameters like learning rate

(lr), number of epochs, and different optimization and activation functions in other experiments.

The best structure of the deep learning model is shown in table 6.5. We executed 12 different

experiments by varying all the hyperparameters to find which model gives the least error on

training and validation data. The comparison of different training and testing loss is shown in

Figure 6.7. The X-axis represents a different experiment with hyperparameter tuning and the

Y-axis loss values. In Figure 6.7a, the experiment with lr = 0.01 and neurons = 32 is the best

one for dataset A as it gives the least error on both training and validation data. The training

loss error is significantly less than the validation loss error because dataset A has a considerably

smaller sample program. Similarly, the experiment with lr = 0.03 and neurons = 32 is the best

for dataset B is shown in Fig 6.7b. Learning curve of the best model for both datasets is shown

in Figure 6.8. The loss scale is different in both figures because of the different numbers of the

samples in each dataset. The figure indicates some oscillation in loss values at the beginning for

dataset A and is smooth for dataset B, but as the number of epochs increases with time, loss

values start converging and saturate to zero. Hence, we limit the number of training epochs to

100.
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(a) Dataset A (b) Dataset B

Figure 6.8: Comparison of Learning Curve.

6.9 Results

The results are shown in the graph in Figure 6; the percentage in the figure, and the data in

Table 6.6 to get better insights into the model. We have executed our Deep learning model 12

times with each combination of different hyperparameters values. This allows us to calculate the

minimum, maximum, and average error values for each configuration set up. The minimum,

maximum, and average values are shown in Figure 6.9. For dataset A, we notice that the

results with lr = 0.01 and nodes = 32 have shown better results where the minimum and

average RMSE values are very close. Also, the maximum RMSE is comparatively close to these

values. The trend in dataset B is different as the results with lr = 0.03 and nodes = 32 have

shown the lowest error rate. Although there is variation in results, there is not a big difference

between the minimum and maximum error values, which shows that, in most cases, our model

has lower error rates as compared to few cases where the error rate is high. The large error is

due to the considerable difference between the properties of training and testing datasets.

We compare our method with other methods in the literature by also pointing out similarities

and differences between the two:

• We use statements and operations of source programs as a feature, similar to the ap-

proaches presented in [22, 66, 108, 67].

• Unlike [22] and [66], we do not use a static approach. Measurement-based approach is

used in a target-hardware agnostic manner.

• Unlike [108] we do not use assembly instructions for feature categorization. We have used
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(a) Dataset A (b) Dataset B

Figure 6.9: Comparison of Min, Max, and Avg RMSE values by executing the model using 12
different configuration settings.

Table 6.6: RMSE Errors of Neural Networks

Dataset Average Error (RMSE) Min. Error (RMSE) Max. Error (RMSE)

Training / Test Training / Test Training / Test

A 21% / 41.3% 17.8% / 23% 22.9% / 66.7%

B 12.7% / 20.6% 11.8% / 17.4% 14.8% / 23.5%

a source program to extract the features.

• Like in [67] we have used Root Mean Square Error (RMSE). However, our results are

different because we have used different datasets and WCET strategies.

6.10 Summary

In this chapter, we present an approach that can be used to predict early WCET using an

ML and DL. The model estimates WCET from the source code of the applications. Features

are generated using the SWEET tool, i.e., the number of statements and operations in the

source code, which are fed into our models to predict WCET after scaling data. Two datasets,

A and B, are created with 57 and 224 samples, respectively. We demonstrate the model for

ARM processors. We have used the Pytorch framework to implement classical ML models

and feed-forward neural networks that converge quickly. The model performance is evaluated
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using metrics called the MSE and RMSE. The MSE value is calculated for ml models, and

we calculated the minimum, maximum, and average RMSE for each distinct neural network

configuration. The RMSE value for the bigger dataset is much better than the smaller dataset.

The results shown in this chapter are not promising as they are too large to use as an upper

bound. However, getting these numbers in the early stage of developing a system is useful in

many ways, such as preventing systems designers from assuming a pessimistic upper bound on

the WCET.
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Chapter 7

Conclusion and Future Work

Accurately estimating the Worst-Case Execution Time (WCET) holds immense significance

in the development of Real-Time and Embedded systems. The scheduler within an operat-

ing system heavily relies on this estimated WCET to efficiently manage and schedule tasks

within these systems, ensuring their execution before designated deadlines. Failure to meet

these timing constraints could result in catastrophic consequences, including resource damage

or, in extreme cases, potential loss of life. These systems necessitate strict adherence to timing

requirements, for example, ensuring that car airbags deploy swiftly enough to save lives in crit-

ical situations. The fundamental components essential for estimating WCET encompass the

system’s architecture or platform, the specific application under consideration, and worst-case

data scenarios. In this context, our proposed methodology introduces novel approaches leverag-

ing machine learning techniques to address these components. By integrating machine learning

into the estimation process, we aim to derive precise and safe WCET estimates, thus enhancing

the predictability and reliability of these systems beyond conventional methodologies. This

innovative approach seeks to optimize safety and reliability by leveraging machine learning’s

capabilities to model intricate system behaviors, facilitating more accurate WCET predictions

crucial for ensuring the robustness and effectiveness of Real-Time and Embedded systems.

In this thesis, we studied how to enable ML and DL approaches to estimate WCET. Es-

pecially we studied (i) the estimation of WCET on GPU architecture using ML approaches in

Chapter 3, (ii) the estimation of optimistic WCET on mixed-criticality systems using ML ap-

proaches in Chapter 4, (iii) the determination of Worst-case data for the estimation of WCET

by integration of Genetic Algorithm and machine learning in Chapter 5, (iv) the estimation of

early WCET using ML and DL approaches in Chapter 6. Note that different scenarios have

different issues that hinder us from estimating WCET precisely and tightly.

The purpose of this chapter is to summarize the discussion and findings in Chapters 3
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through 6, address the limitations of the implementation and analysis, and present opportunities

for future work.

7.1 Conclusions

This section summarizes the main contributions of our work in each scenario.

• Estimation of WCET on GPU architecture (Chapter 3)

With the advances in machine learning and artificial intelligence in every field of life, due to

its tendency to solve many problems with accuracy, it requires Graphics Processing Units

(GPUs) to provide massive parallelism for computation. GPUs are designed to provide

high-performance throughput, but their integration into real-time systems focuses on

predictability because most safety-critical applications have strict deadlines that need to

be followed to avoid unwanted situations. In this chapter, we propose a Machine Learning

approach to estimate the WCET of the GPU kernel from the binary of the applications.

The approach helps reduce the significant design space exploration in a short time. We

use a measurement-based approach to train the machine-learning model using different

kernel instructions, which can predict the WCET of the GPU kernel to detect timing

misconfiguration in the later development phase of the systems.

• Estimation of WCET on Mixed-Criticality Systems (Chapter 4)

In Mixed-Criticality (MC) Systems, there is a trend of having multiple functionalities upon

a single shared computing platform for better cost and power efficiency. In this regard,

estimating the suitable optimistic WCET based on the different system modes is essential

to provide these functionalities, is presented in this Chapter. A single application has

assigned multiple WCETs based on the criticality of the system, such as safety-critical,

mission-critical, and non-critical. We propose ESOMICS, a novel method to estimate

suitable optimistic WCET using a Machine Learning model. Our approach is based on

the application’s source, and the model is trained based on the large data set. To prove

the effectiveness of our approach, we evaluated it with a newly defined metric EDT using

an analytical solution that allows us to compute the optimum value in a mixed-criticality

system based on experimentation. Our experimental results outperform all the previous

state-of-the-art approaches.

• Estimation of Worst-Case Data for WCET (Chapter 5)

Worst-Case Data which gives maximum execution time, plays a vital role in the estimation

of WCET. An evolutionary algorithm, such as the Genetic Algorithm, has been employed
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to generate the Worst-Case Data. The complexity of an evolutionary algorithm requires

the use of several computational resources. In this Chapter, we propose a method to

replace the hardware and simulator used in the evolution process with Machine Learning

models. This method reduces the overall time required to generate Worst-Case Data.

Different machine learning models are trained to integrate with genetic algorithms. The

feasibility of the proposed approach is validated using benchmarks from different domains.

The results show the speedup in the generation of Worst-Case Data.

• Estimation of Early WCET (Chapter 6)

WCET is available to us in the last stage of systems development when the hardware

is available, and the application code is compiled. Different methodologies measure the

WCET, but none give early insights into WCET, which is crucial for system development.

If the system designers overestimate WCET in the early stage, then it would lead to

an overqualified system, which will increase the cost of the final product, and if they

underestimate WCET in the early stage, then it would lead to financial loss as the system

would not perform as expected. In this Chapter, we propose to estimate early WCET

using Machine Learning and Deep Neural Networks as an approximate predictor model

for hardware architecture and compiler. This model predicts the WCET based on the

source code without compiling and running on the hardware architecture. The resulting

WCET needs to be revised to be used as an upper bound on the WCET. However, getting

these results in the early stages of system development is an essential prerequisite for the

system’s dimension’s and configuration of the hardware setup.

7.2 Future Work

In this section, we discuss some potential directions for the future work. These potential future

directions are either some extensions or complementaries of the works presented in the main

chapters.There are, however, several open issues that need to be addressed when designing such

systems, including:

• Safety and Reliability Management: To avoid failure and disastrous outcomes, RTS

systems must guarantee the proper execution of functions, particularly HC tasks, through-

out run-time under a variety of scenarios (e.g., hardware faults, software errors, etc.).

Thus, in order to guarantee long-term and application-specific dependability, RTS systems

need to be carefully built. Fault-tolerance techniques are used in the design of such sys-

tems to ensure system safety. Different approaches, including replication or re-execution,
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are required in the event of fault incidence in order to strengthen their defenses against

future failures. Furthermore, the requirements for dependability might vary among tasks

due to the differing safety standards. The impact of a failure on a system varies depending

on the task’s criticality level, ranging from minimal to catastrophic. Therefore, consid-

ering cross-layer reliability is also crucial in efficiently designing these RTS systems that

need to be focused on and deeply studied in the future.

• Feature Engineering/Selection and Hyper-Parameter Tuning: Feature engineer-

ing is a pivotal process in machine learning, where raw data is transformed or enhanced to

create more informative and predictive features for training models. It involves selecting,

creating, or modifying features that can improve a model’s performance. Techniques in

feature engineering may include scaling, normalization, one-hot encoding, binning, and

generating new features through mathematical transformations or domain-specific knowl-

edge. Effective feature engineering can significantly enhance a model’s ability to discern

patterns and relationships within the data, leading to improved predictive accuracy and

generalization. In order to acquire a set of qualitative features, we need to gain insight

into the actual data while looking for correlations between them.

Parameter tuning, often referred to as hyperparameter optimization, involves fine-tuning

the settings or configurations of a machine learning algorithm to achieve optimal perfor-

mance. Hyperparameters control the learning process of the model and are distinct from

the parameters learned during training. Techniques like grid search, random search, or

more advanced methods like Bayesian optimization or genetic algorithms are used to ex-

plore various hyperparameter combinations efficiently. Optimizing these hyperparameters

is crucial as it can substantially impact a model’s predictive power, generalization ability,

and overall effectiveness in tackling unseen data.

Both feature engineering and parameter tuning are critical stages in building robust and

accurate machine-learning models. While feature engineering focuses on crafting infor-

mative representations of data, parameter tuning aims to optimize the settings governing

the learning process, collectively contributing to the model’s predictive performance and

adaptability across diverse datasets.

• Bigger Dataset: To train any prediction model, we require a large dataset in addition to

features that are well-designed. The automated testbench is a first step towards rapidly

gathering additional data. However, there are still ways to improve the upper bound

measurement precision and expedite the profiling procedure. The flow graph’s inclusion
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of static data analysis would be one of these enhancements. This would reduce the need

for human code annotation by enabling us to locate and provide data input that seeks to

trigger worst-case scenarios. An alternative strategy is to use augmentation techniques,

as suggested by [82] and [207], to enhance the dataset’s size. In their research, they

created a source code generator that produces pseudo-random code based on the requested

characteristics, e.g., flow facts, number of variables, type of instructions, etc.

• Selection of Best Model: Our focus primarily revolved around employing regression

models for WCET prediction in our conducted tests. However, in contrast with regres-

sion models, alternatives such as better DNN models like CNN, RNN, and Transformer

possess the capability to grasp intricate nonlinear system behaviors. Nevertheless, DNNs

often require substantial amounts of training data to yield meaningful results. Another

approach involves mitigating outliers within individual models by combining multiple

models into an ensemble, culminating in a singular, highly predictive model. By combin-

ing various models spanning diverse domains, an ensemble model amalgamates superior

performances, frequently outperforming the best individual model within the group.
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A Appendix

The experimental analysis of different applications from the Mälardalen benchmark is shown

below for the newly proposed metric LTM/EDT. Each Figures part (a) represents the execution

distribution on the Y-axis, and the clock cycle is on the X-axis. In Figure part (b) LTM/EDT

value is represented on the Y-axis, and the clock cycle is on the X-axis. These figures show

us that through extensive and rich experiments, our proposed approach is a better choice of

suitable WCETopt because none of the state-of-the-art approaches estimate suitable WCETopt

with better accuracy as our approach.
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Figure 7.1: Analysis of cnt application

0 2500 5000 7500 1000012500
Cycles

0

100

200

300

Fr
eq

ue
nc

y 
D

is
tr

ib
ut

io
ns

AVG = 4268
Exp OptW = 4797
MAX = 11709

(a)

0 2500 5000 7500 1000012500
Cycles

0.6

0.8

1.0

1.2

1.4

1.6

ED
T

1e6

Exp OptW = 4797
Best Model = 5175

(b)

Figure 7.2: Analysis of compress application
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Figure 7.3: Analysis of expint application
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Figure 7.4: Analysis of fdct application
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Figure 7.5: Analysis of insertsort application
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